ID26 - High-Brilliance X-ray Spectroscopy


ID26 is dedicated to advanced X-ray spectroscopy in the applied sciences. The high-brilliance X-ray beam allows for absorption studies on very dilute samples. X-ray emission spectroscopy is performed by means of a crystal spectrometer.
Status:  open


  • Chemistry
  • Physics
  • Earth and Planetary Sciences
  • Environmental Sciences
  • Materials and Engineering
  • Life Sciences
  • Medicine
  • Cultural Heritage


  • Catalysis
  • Materials science
  • Earth science
  • Environmental science
  • Biology


  • XAS - X-ray absorption spectroscopy
  • XES - X-ray emission spectroscopy
  • IXS - inelastic X-ray scattering
  • REXS - resonant elastic X-ray scattering
  • XMCD - X-ray magnetic circular dichroism
  • RIXS - resonant inelastic X-ray scattering

Energy range

  • 2.4 - 27.0  keV

Beam size

  • Minimum (H x V) : 600.0 x 100.0  µm²
  • Maximum (H x V) : 1500.0 x 1000.0  µm²

Sample environments

  • Gas tubing system with mass flow controllers
  • Mass spectrometer + gas chromatograph
  • He-flow cryostat (15 K)
  • See also ESRF sample environment group


  • Canberra photo diodes
  • 5-analyzer x-ray emission spectrometer
  • Avalanche photodiodes

Technical details

Specifically, the beamline offers high energy resolution fluorescence detected (HERFD) XAS, range-extended EXAFS, (non-)resonant XES, and resonant IXS. The resolving power (solid angle) of the spectrometer can be varied between 2500 (0.15sr) and 20000 (0.01sr) by adjusting the analyzer crystal bending radius. The detection limit may be below a monolayer (1 mM, 10 ppm) for XANES studies. Various furnaces, cryostats and in-situ cells from the ESRF sample environment pool can be mounted.

[1] Coord. Chem. Rev. 249 65-95 (2005). [2] Eur Phys J-Spec Top 169 207-214 (2009). [3] J. Am. Chem. Soc. 131 13161-13167 (2009). [4] Journal of the American Chemical Society 132 2555-2557 (2010). [5] Physical Review Letters 105 037202 (2010).

Latest publications

View all publications
Closure of the Mott gap and formation of a superthermal metal in the Fröhlich-type nonequilibrium polaron Bose-Einstein condensate in UO2+x

Conradson S.D., Andersson D.A., Boland K.S., Bradley J.A., Byler D.D., Durakiewicz T., Gilbertson S.M., Kozimor S.A., Kvashnina K.O., Nordlund D., Rodríguez G., Seidler G.T., Bagus P.S., Butorin S.M., Conradson D.R., Espinosa-Faller F.J., Hess N.J., Kas J.J., Lezama-Pacheco J.S., Martín P., Martucci M.B., Rehr J.J., Valdez J.A., Bishop A.R., Baldinozzi G., Clark D.L., Tayal A.,
Physical Review B 96, 125114-1-125114-14 (2017)