

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

F. Cullinan, R. Nagaoka (SOLEIL, St. Aubin, France)

D. Olsson, G. Skripka, P. F. Tavares (MAX IV, Lund, Sweden)

Acknowledgements:

O. Marcouillé, A. Mary (SOLEIL)

Introduction

- Wakefield impedance of wiggler determined from simulations in GdfidL and ABCI
 - Taper transitions to main vacuum chamber
 - Vacuum tank included in 3D (GdfidL) simulations
- In-vacuum wiggler WSV50
 - Designed and built at SOLEIL
- 1 installed at SOLEIL
 - Preparations to close the minimum gap from 5.5 mm to 4.5 mm
- Similar design for MAX IV 3 GeV ring
 - Must be included in beam stability simulations so far, threshold currents/growth rates only predicted for bare machine
 - Design includes option for tapered magnetic section

WSV50 (SOLEIL)

Springs along length for magnetic force compensation

Cylindrical vacuum tank

Taper transition to beam pipe cross section

Taper Impedance Theory

- Perturbation theory applied to field inside tube of constant aperture
 - Perturbative field that allows for small change in beampipe aperture while a still solution of Maxwell's equations
- Properties at low frequency:
 - Purely imaginary
 - Longitudinal impedance inductive
 - Transverse impedance frequency independent
 - Rectangular tapers have larger impedance than circular
 - For small rectangular taper widths, transverse impedance proportional to taper width
 - Resonances important at high frequency

Stupakov G. et al, 2007. *Low Frequency Impedance of Tapered Transitions with Arbitrary Cross Sections,* Phys. Rev. ST. Accel. Beams **10**, 094401 and references

GdfidL Model

Other geometries simulated:

- Geometry reconstructed in GdfidL from geometric primitives
- Vacuum tank and springs
 included
- Springs modelled as cylinders

Longitudinal Impedance

Power Loss

Transverse Impedance

MAX IV

	SOLEIL (uniform fill)	MAX IV
Energy/GeV	2.75	3.0
Design current/mA	500	500
Harmonic number	416	176
RF frequency/MHz	352.2	99.931
e ⁻ per bunch/10 ¹⁰	0.9	3.2
RMS bunch length/ps	20	40
Bunch length with HC/ps	N/A	195

Differences in taper design:

- Dimensions slightly different
- Smaller minimum gap, 4.2 mm
- Longer springs are wider
- Springs do not extend right to end of girder
- Option for wiggler gap to change along magnetic section additional taper
- Additional transition to MAX IV circular vacuum chamber (not included)

Tapered Magnetic Section

- Simulation performed using ABCI for mesh sizes of 50 µm
- 2D simulation (axial symmetry assumed)
- Maximum 2 mm change in wiggler gap over length of about 2 m
- Direction of the taper makes no difference

Tapered Magnetic Section

- Imaginary impedance at 0 frequency compared with theory
- Imaginary impedance taken at 60 MHz to avoid transient effects near 0

Conclusion and Outlook

- Longitudinal and transverse impedances of WSV50 have been evaluated for both SOLEIL and MAX IV
- Inductive impedance is in agreement with theory of tapered transition except for at large wiggler gaps with vacuum tank
- Vacuum tank important for transverse impedance
 Presence of trapped modes
- Similar conclusions can be drawn for MAX IV wiggler
- Tapered magnetic section causes small reduction in impedance
- Results must be added to impedance of MAX IV 3 GeV ring with tracking simulations to estimate the resulting current thresholds

Back up

Taper Impedance – Perturbation

- Electric field of an offset line charge with charge density λ (electric dipole) inside a perfectly conducting cylinder
- Solve Poissons equation for electric potential ϕ_0

 $\nabla^2 \phi_0 = -\frac{\rho}{\epsilon_0}$ $\phi_0(r,\theta) = 2\lambda \Delta \left(\frac{1}{r} - \frac{r}{b^2}\right) \cos \theta$

- Add perturbation φ_1 and allow b to vary with z $\phi = \phi_0 + \phi_1$ $\nabla_{\perp}^2 \phi_1 = -\frac{\partial^2 \phi_0}{\partial z^2}$
- Similar approach for magnetic field (magnetic dipole) to arrive at transverse impedance

$$Z_T(\omega=0) = -\frac{i}{\lambda\Delta c} \int_{-\infty}^{\infty} (E_z - H_y) dz$$

Stupakov G. et al, 2007. *Low Frequency Impedance of Tapered Transitions with Arbitrary Cross Sections,* Phys. Rev. ST. Accel. Beams **10**, 094401 and references

Trapped Modes

Shunt impedance evaluated at 1 mm offset

With springs:

Trapped Modes

- Low frequency modes found using frequency domain computation
- 600 µm mesh

Resonant frequency/MHz	Shunt impedance/Ω	Internal quality factor
51	431	903
92	97	1053
193	141	3347
265	153	1896
400	117	2438
525	112	2494

Trapped Modes

- Low frequency modes found using frequency domain computation
- 600 µm mesh

Without springs:

