

E-XFEL STANDARD ELECTRON BEAM DIAGNOSTICS

Dirk Nölle for the XFEL Diagnostics Team

DEELS Workshop, ESRF, 12.05.2014

XFEL Standard Electron Beam Diagnostics @ XFEL

Outline

- Short Roundtrip of the XFEL Project
- What is the Standard Diagnostics?
- Beam Position Monitors (Collaboration with PSI/CEA)
 - This talk will show the aspects of the mechanics
- Charge Monitors
 - Toroids
 - Dark Current Monitors
- Beam Size Measurements
 - Screens
 - Wire scanners
- Beam Loss Monitors
- Dosimetry System
- Other ... Restriction of the Talk's Scope to "Main Systems"

- 5 experimental stations to be extended to 10
- potential extension with a second experimental hall

Dirk Nölle, DESY, DEELS 2014

Dirk Nölle, DESY, DEELS 2014

XFEL XFEL Construction

- Civil Construction started 2009
- Christmas 2009: XFEL Company founded
- Underground Construction finished: 6/2013
- Infrastructure of XTL ready: 9/2013
- RF Test of Gun in the Injector Tunnel: Dec 2013
- Start of Machine Installation: now
- Commissioning of the Gun: Summer 2014
- Commissioning of the Injector: Spring 2015
- Installation Ready; Tunnel Closed: 7/2016
- First Lasing Possible: Dec 2016

European **XFEL But**

More Pictures from the XFEL Project: <u>http://xfel.desy.de/pictures/</u> http://adweb.desy.de/home/dnoelle/WWW/XFEL_meets_Photoshop/index.html

XFEL What is Standard Diagnostics at XFEL?

System	Subsystem	Gun	Injektor [XTIN]	XTL	XTDs
BPM System	Button	1	16	180	111
~ 480	BPME				101
	BPMF/I		3	19	5
	BPMR		1	30	
	Button Array			3	
	HOM		2		
Charge	FCUP	3			
~ 50	DCM	1	1	8	
	Toroid	1	3	16	15
Screens	Simple	3			
~ 75	OTR_ABCL		7	26	16
	OTR_DE		1	4	5
	OTRS			3	
	Beam Size Dump			1	2
Miro Scoppore				6	6
				0	0
12					
Loss Monitors	BLM	1	18	100	192
~ 320	BHM		1	1	2

Electronics in XFEL

European

FEI

- Long Tunnel
 - All electronics inside
 - Limited space
 - Mixture of Trades
- Using KDS as a planning tool
 - All cables have to be specified
 - Orders are generated
 - Documentation is ready when cables are installed.

European 3Lab InKind Contribution: XFEL BPM System

- 3 types of BPMs
 - Button BPM for different beam pipes
 - Cavity BPM for 2 beam pipe diameters
 - Reentrant Cavity BPM 30% of cold LINAC
- Build by 3 Lab Collaboration
 - CEA: Reentrant Cavity BPM + RFFE
 - PSI: Entire Electronics, except Reentrant RFFE
 - DESY: Entire Mechanics, except Reentrant Body
- Readout
 - MBU (Modular BPM Unit)
 - 4 Button BPMs
 - → 2 (Reentrant) Cavity BPMs,
 - 1 Cavity + 2 Buttons
 - Connection to DOOCS via a FPGA-FPGA Bridge with optical fibers.
 Up to 4 MBU connect to 1 DAMC02 interface board.
 - Timing: Decoding XFEL timing protocol (via fiber) in the MBU
 - Ref. Frequency (Cavity only) 216 MHz
 - More Details, Specs and Performance: to be presented by Boris

XFEL WP-17: Cold BPMs

Delivery of cold BPMs for module assembly established:

- Production of BPMs finished
- First assemblies with both types successful
- Stock building of BQU for module production done
- Assembly of BQU for modules possible any time on request.

- BPM System on Schedule
 - Prototype tests @ FLASH all types successful
 - All BPMs in house. Series production finished
 - Electronics development has reached and even exceeded specifications.
 - Pre-series of Cavity BPM system (Pickup by DESY and electronics by PSI) and is installed at FLASH II. Operation starts in KW17.

European E-XFEL Diagnostics European XFEL BPME Cavity BPM for the Undulator Sections

- Goal: robust high performance BPM, suited for mass production.
- No individual tuning foreseen
- Starting point: SACLA design by T. Shintake
- First prototype @ 4.4 GHz
- Design adapted to XFEL frequency 3.3 GHz (in Agreement with Electronics Development)
- RF simulation and mechanical design at DESY
- Prototypes in DESY workshop
 - Beam tests at FLASH and PSI injector
 - Industrialization; Qualify companies (painfull)
 - Tender process (European)
 - Pre-series 2 x 9 BPMs (perfect quality from two vendors)
 - Series production with extensive QA support from DESY
 - Finally 140 BPMs in spec.

Similar Procedure for Beamline Cavity BPM Series of 30 BPMs finished successfully

XFEL Series production of Undulator Cavity BPMs

- DESY provided a system to measure RF properties at FMB Berlin observe status of BPM fabrication at each step:
 - before brazing,
 - after brazing and
 - after welding of feedthroughs
- A measurement takes few minutes with additional analysis
- Measurement results send to DESY for revision and to get permission for next step.
- Delivery of BPMs in small lots after final production each, final measurement at DESY for acceptance.
- Additional acceptance Tests; Leak Check, RGA and Particle Cleanliness

XFEL Series production of Undulator Cavity BPMs

E-XFEL Diagnostics

- After some pieces we observed a larger frequency variation at the reference resonator after brazing (still in spec)
- Production stopped, Investigation, Counteraction fixed, Production continued.

Button BPMs

European

XFEL

Except of the Cold BPMs produced by industry, 3 further types are produced in house, using a High Precision Machine (OKUMA)

- BPMA: working horse 40,5 mm beam pipe (220 on stock)
- BPMD: 96 mm beam pipe for Dumps, Switchyards
 25 have been produced
- BPMW: BPM before the dump window (200 mm); all 3 items are available
- All feed-throughs delivered;
 Custom Development together with Industry (VACOM).
- Cleaning and final Assembly in House (ISO5 Cleanroom)

E-XFEL Diagnostics BPM Production at the DESY Workshop XFEL 2 h/ BPM in 1.4429

20

MHOLTZ Sociation

XFEL WP-17:Charge Measurements

- Current Transformers or Toroids
 - Network of monitors to interlock on transmission and bunch pattern failure
 - Noise < 1 pC
 - Electronics still in development
 - Vacuum hardware and most of the Front-End Electronics ready
 - 4 pickups and prototype front ends installed in FLASH II
- Dark Current Monitor
 - Cavity based
 - Measure dark current and bunches
 - Sensitivity about 10 nC (DC), 100 fC (bunched)

Dirk Nölle, DESY, DEELS 2014

XFEL WP-17: Beam Size Measurements

- Screen Stations
 - Scintillator based, Spatial suppression of COTR
 - On Axis, Off axis screen plus calibration target
 - Uses "Scheimpflug's" Principle to extend depth of field
 - Big chip 4 MP CCD with GigE interface
 - 10 µm resolution, sensitivity sufficient for about 50 pC (single bunch, streaked, shown at FLASH)
 - About 60 stations, 12 with off axis screens
 - Vacuum hardware in house, final assembly started
 - 4 XFEL type stations installed at FLASH II
- Wire Scanners
 - Triggered fast scanner with 1 m/s speed, slow scans also available
 - Separated horizontal and vertical units
 - Full profile within a macro-pulse
 - Vacuum hardware to be delivered house, remaining components ordered
 - Detector development going on

XFEL Screens: Optics Design Record On-Axis **and** Off-Axis Profiles

Basler Aviator avA2300-25gm 2330 x 1750 pix, 5.5 μm Monochrome, GigE

f = 180mm for 1:1 f = 120mm for 1:2

Large Area Photo Macro Lenses from Schneider Kreuznach

FLASH II Installation

European **XFEI**

25

XFEL Screens: Resolution Measurement and System Performance

Resolution map of the Optics using the build in calibration target. The "tilt axis" goes from left to right.

Beam spots moved by a dipole along the "tilt axis" to different positions on the screen

Picture on the right shows the overlay of the single pictures.

XFEL XFEL Wirescanner

Location of Wire-scanners @ XFEL

- Slow and fast scans (1 m/s) possible
- Fast Scan on trigger (Jitter < 10 µs) within one bunch train
- Max. 100 bunches/train should hit the wire
- Detector and Scanner weakly coupled (by DAQ)
- BLM suited as additional detectors
- WS planned before collimator and before each undulator
- Vacuum ports foreseen also in the BC's (COTR)
- Mechanics ordered; ready Q1/2014

XFEL Wirescanner: Block Circuit

XFEL WP-17: Loss and Dose Measurements

- BLM: Beam Loss Monitors
 - Based on Scintillators and Photomultipliers
 - µTCA based with low latency MPS interface
 - Scintillators & Mechanics: Production finished at IHEP
 - Pre-series being installed at FLASH II
- BHM: Beam Halo Monitors
 - Diamond and Sapphire crystals used as "ionization chambers"
 - µTCA readout similar to BLMs
 - Serious problem to get good diamond detectors.
 - System for the injector ready for installation
 Dosimetry:
 - Gamma and Neutron sensors
 - FMC board integrated on MPS board
 - Distributed system in electronics racks
 - Bus system with external sensors for undulators
 - Final prototyping phase

E-XFEL Diagnostics Beam Loss Monitor European XFEL System for XFEL **Beam Loss Monitor** Readout **PMT** Electronics Scintillator & HV 2 BLM/ Alarm Undu (to MPS) Power control e,γ,n⁰ ~300 Beam Loss Monitors (More than half – in undulator area) MPS to MPS master 2 master 1 Injector II Booster I Linac Linac Booster II SASE 1 Injector I MPS to MPS master 2 master 1 DAMC02 with custom RTM NN NN NN NN **Comparator, ADC, Alarm Generator Test Pulse Driver** Supply for Cockcroft Walton Generator **Prototypes in test** -

Pre-series for FLASH II in Production

European XFEL Diagnostics BLMS: Production of Housings and Scintillators @ IHEP Protvino

Test unit for scintillator test. The black cap houses beta source (Sr^{90})

scintillator

QA of mechanics after delivery

Picture from the irradiation facility at IHEP; Radiation Damage Tests

E-XFEL Diagnostics European XFEL The radiation monitoring system

External Sensors 0.1 Gy – 2 kGy; up to 10 kGy => reduced resolution

Total: 540 external sensors + 330 internal sensors

31

XFEL Realization – system components & setup

XFEL Other small Systems and special Items

- Focus of the talk was on items produced in bigger numbers
- Nothing reported on
 - Special OTR stations for the BC and dumps
 - (start production of vacuum vessels soon)
 - Mechanics Contributions for WP-18
 - → E-BPM (start production of vacuum vessels soon)
 - and BAM mechanics (ready)
 - Beam Halo Monitors
 - Diamond Detectors used as ionization chambers using adapted BLM electronics
 - Serious problems to get the diamonds with required quality (electric strength worse than previously delivered sensors)
 - Gun diagnostics (clone of recent PITZ/FLASH design)
 - HOM based BPM Phase Monitor development for 1.3 GHz and 3.9 GHz systems

Thanks to all colleagues contributing to the work presented here:

- W. Decking
- C. Simon
- B. Keil
- M. Pelzer
- S. Vilcins
- C. Wiebers
- M. Werner
- I. Krouptchenkov
- A. Kaukher
- M. Holz
- J. Lund-Nielsen
- N. Baboi

- H. Tiessen
- T. Lensch
- F. Krivan
- A. Delfs
- R. Neumann
- N. Wentowski
- D. Lipka
- M. Yan
- M. Drewitsch
- I. Kundoch
- D. Bandke

- V. Gharybian
- G. Kube
- K. Wittenburg
- F. Schmidt-Föhre
- N. Baboi
- J. Kruse
- C. Behrens
- R. Susen
- P. Smirnov
- J. Neugebauer
- Z. Pisarov

