

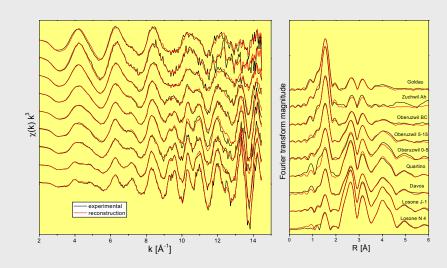
Quantitative Antimony Speciation in Shooting-Range Soils by EXAFS Spectroscopy and Iterative Transformation Factor **Analysis**

A.C. Scheinost¹, A. Rossberg¹, Ch. Hennig¹, D. Vantelon², R. Kretzschmar², A. Johnson³

¹ Biogeochemistry Group, Institute of Radiochemistry, FZ Rossendorf, Germany

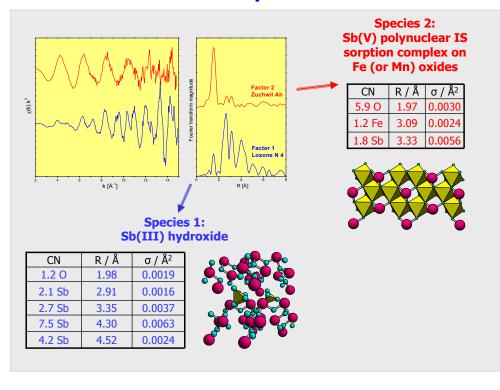
² Institute for Terrestrial Ecology, ETH Zurich, Switzerland

³ Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland

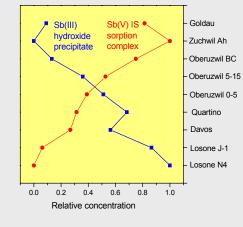

Introduction

- Ca. 100,000 tons Sb mined annually.
- Toxicity similar to As, with Sb(III) 10x more toxic than Sb(V).
- Sb is used to harden the Pb cores of bullets (1-2% Sb). Since ca. 100,000 tons of bullets are deposited in the soils of shooting ranges each year, 1,000-2,000 tons of Sb reach the environment via this path.
- Very little is known on the geochemical behavior of Sb in the environment.
- For the first time, we were able to determine the chemical species of Sb and their distribution in soils, using EXAFS spectroscopy combined with a statistical approach (ITFA), a technique particularly suited for quantitative speciation in complex systems like soils (Scheinost et al. 2004).

Materials & Methods


- Soil samples from 6 Swiss shooting ranges
- pH: 3.1 7.5
- Sb: 1000 17000 mg/kg
- EXAFS measurements at ROBL
- Sb K-edge: 30,491 eV
- Fluorescence with 4-element Ge detector
- Cryostat at 20 K to reduce thermal vibrations
- Iterative Transformation Factor Analysis (ITFA) as in Rossberg et al. (2003)

Sb K-edge EXAFS spectra of soil samples


 All spectra can be reconstructed with two spectral components, indicating that only two species are present

Identification of Sb species

Conclusions

Quantification of Sb species

- **Species 1** prevails in acidic (pH 3), organic matter-rich soil (Losone)
- Species 2 prevails in slightly acidic soil (Zuchwil)
- Species **1** and **2** are both present in calcareous soils (all others)
- Inspite of a wide range of chemical conditions (pH, mineral composition, organic matter, etc.) present in the investigated soils, only two species could be detected: a Sb(III) hydroxide phase and Sb(V) sorbed to Fe (or Mn) oxides.
- The biogeochemical factors influencing distribution of Sb among the two species are unclear.
- Since the solubility of Sb(III) hydroxides is low, the more toxic Sb(III) is efficiently immobilized.
- Sb(V) is also tightly bound by formation of an IS sorption complex.
- Our results suggest a low mobility and relatively small environmental risk of Sb in shooting range soils.

Contact:

Andreas Scheinost ROBL-CRG ESRF

Tel: +33 (476) 88 24 62 Fax: +33 (476) 88 25 05 scheinost@esrf.fr

B.P. 220 38043 Grenoble France

References:

Rossberg, A.; Reich, T.; Bernhard, G. Analytical and Bioanalytical Chemistry **2003**, *376*, 631-638. Scheinost, A. C.; Rossberg, A.; Marcus, M.; Pfister, S.; Kretzschmar, R. Physica Scripta 2004, in press.