

Linking Monte Carlo Simulation and Target Transformation Factor **Analysis: A Novel Tool for EXAFS Analysis**

A. Rossberg and A.C. Scheinost

INTRODUCTION

- Uranyl speciation in aqueous solutions is often complex, since several species may coexist at one pH
- Advanced statistical methods like Target Transformation Factor Analysis (TFA) or Iterative TFA /1/, which are able to extract single species from the EXAFS spectra of mixtures, require as input information either
 - \Rightarrow the XAFS spectra of the pure species
 - \Rightarrow or the concentration of the species in the mixture /2,3/.
- However, often such spectra do not exist, since the species cannot be prepared in pure form, and the species concentration is unknown.
- We have developed a new method, to determine the structure in solution. The new method MCTFA links Monte-Carlo simulation (MC) to TFA.
- To test our approach, we have used a system with known pH-speciation (0.05 M U(VI), 1.0 M acetic acid in the pH range 0.1 to 4.5).

Analysis of Model System /2/

U-L_{III} EXAFS spectra (black) and their abstract reproductions (Eigenanalysis, red) [D] k [Å⁻¹]

Abstract EXAFS spectra (Eigenvectors)

>The data are reproduced by [D] = [R]_{abs}* [C]_{abs}.

>Only two spectroscopic components are required to describe the variation of spectra: U-H₂O and U-carboxylate

Conclusions

- From the EXAFS spectra of mixtures of aqueous uranyl and several U-acetate complexes, we could derive the structure of the U-carboxylate unit.
- Neither the spectra of the pure species nor their concentrations were required.
- The newly developed MCTFA approach should be suited to solve the structure of much larger complexes, e.g. involving lignin or even NOM.
- However, the computing time will drastically increase. Our relatively simple calculations took 110,000 steps and 10 min on a PIII 1.2 GHz to converge.

Application of MCTFA

Objective:

Determination of the structure of U(VI)/acetic acid complexes under illdefined conditions (mixture of species, short k-range: 3-12 Å⁻¹, small number of spectra: 4, pH 0.10 - 2.69)

MCTFA Procedure

- + Fit of spectrum pH 2.69 to determine Debye-Waller factor σ_{eq} for O_{eq} and energy shift ΔE using FEFF and uranyl triacetate /5/ (Table 2).
- Calculate $[R]_{abs}$ and Eigenvalues [Λ] using the spectra pH 0.10 2.69
- Set up a cube with edge length 6 Å, insert acetate molecule such that C(1) is in the center of the cube, put U-atom at a random position in the cube. Calculate distances R_i between U and acetate atoms.
- Calculate the theoretical EXAFS spectrum (vector x_{test}) using R_i and the fit values of O_{ax}, σ^2_{eq} , ΔE (Table bottom, σ^2 of C(1) and C(2) was set to 0.004 Å²).
- Introduce x_{test} as target test vector into the TFA procedure; this yields the predicted vector $x_{pred} = [R]_{abs} * [\Lambda]^{-1} * [R]' * x_{test}$.
- Determine chi² between x_{pred} and x_{test} and normalize to variance (x_{pred}^2) , save the best normalized chi².
- Go to step (3) and repeat 5000 times.
- Put U-atom at the position of the lowest normalized chi^2 , divide edge length of cube by 1.3. If edge length > 0.02 Å then go to step (3)
- U-atom has reached the optimum position towards the ligand

MCTFA Results

U density distributions around the acetate molecule

(yellow balls indicate best fits, blue balls bad fits)

MC simulation using experimental EXAFS spectrum of the pure species (pH 4.48)

MCTFA using "ill-defined" spectra (pH 0.1 – 2.69)

EXAFS fit of the two spectral components

	Atom	R [Å]	N	σ²*10 ⁻³ [Å]²
U-H₂O	O _{ax}	1.77	2.0	1.3
	O _{eq}	2.41	5.3	7.2
U-carboxylate	O _{ax}	1.78	2.0	1.4
	O _{eq}	2.47	6.0	8.5
	C(1)	2.87	3.1	3.8
	C(2)	4 39	31	3.8

Contact:		
André Rossberg	Tel: +33 (476) 88 2847	B.P. 220
ROBL-CRG	Fax: +33 (476) 88 2505	38043 Gi
ESRF	rossberg@esrf.fr	France

enoble

MCTFA results (red: fitted, green: fixed)

Atom	R [Å]	N	σ ² *10 ⁻³ [Å] ²
O _{ax}	1.78	2	1.7
O _{eq}	2.46	4	9.5
C(1)	2.84	2	4
C(2)	4.34	2	4

REFERENCES
/1/ Malinowski, E. R., Anal. Chem., 49, 612 (1977)
/2/ Rossberg, A., Doctoral Thesis, Technical University Dresden 2002
/3/ Rossberg A., Reich T., Bernhard G., Analyt. and Bioanalyt. Chem., 376, 631 (2003)
/4/ Ahrland, S., Acta Chem. Scand., 5, 199 (1951)
/5/ Templeton, D. H., Zalkin, A., Ruben, H., Templeton, L. K., Acta Cryst., C41, 1439 (1985)