

Polarized EXAFS of uranium L_1 and L_3 edges - A comparison

Christoph Hennig and Andreas Scheinost

Introduction

Uranium(VI) consists predominantly of two double bonded oxygen atoms in axial direction (O_{ax}) and 4, 5 or 6 oxygen atoms in the equatorial plane (O_{eq}) [see figure right]. This anisotropic coordination leads to a strong polarization dependence of XAFS.

Responsible for the polarization dependence are the electron waves with different impulse-momentum at the L_1 and L_3 edges.

Here we investigated this effect by comparing experimental data with the theory.

Experimental

Polarized EXAFS spectra using a single crystal of Ca[UO₂PO₄]₂·6H₂O were collected at the Rossendorf Beamline in transmission mode at room temperature. Effective coordination numbers N_{eff} were extracted from these spectra by shell fitting and additionally calculated as shown below.

Conclusions

• Theory and experiment are in good agreement

• Polarization dependence of L_1 edge is significantly stronger that of L_3 edge

• However, the higher transition probability at the L_3 edge is responsible for a lower noise of the spectra

Uranium L₁ edge

At the L_1 edge the photoelectron is excited from s ground state into final state *p*. For a single-scattering process and in plane-wave approximation the angular dependence of L_1 and *K* edges can be written as:

$$N_{\text{eff}}(\theta) = \sum_{n=1}^{N} 3 \left| \vec{\varepsilon} \cdot \vec{r} \right|^2$$

In order to relate polarization vector $\vec{\varepsilon}$ and and the vector conecting the absorbing and backscattering atom \vec{r} to morphological parameters of the sample, θ is divided into two angles α and β .

 $\left|\vec{\varepsilon}\cdot\vec{r}\right|^2 = \cos^2\beta\sin^2\alpha + (\sin^2\beta\cos^2\alpha)/2$

The effective coordination number N_{eff} is then related to the real crystallographic coordination N_{cryst} by:

 $N_{eff}(\theta) = N_{cryst} \Im \left(\cos^2 \beta \sin^2 \alpha + (\sin^2 \beta \cos^2 \alpha) / 2 \right)$

Coordination number

N(Oax)

0.30

0.66

2.00

3.57

4.84

α 0°

15°

35°

55°

75°

N(O_{eq})

7.23

5.95

4.00

1.13

Uranium L₃ edge

At the L_2 and L_3 edges the photoelectron is excited from p ground state into final states *s* (*I=0*) and *d* (*I=2*). The EXAFS expression comprises here pure *s*, pure *d* and coupled *s*-*d* states.

Defining *c* as the ratio between the radial dipol matrix elements M_{01} and M_{21} coupling the initial 2p wave function with the *s* and *d* final states, the coordination number can be expressed as the sum of three effective partial coordination numbers /1/:

$$N_{\text{eff}}^{d}(\theta) = 0.5 \left[\frac{2}{2+c^2}\right] \sum_{i=1}^{N} (1+3\left|\vec{\varepsilon}\cdot\vec{r}\right|^2)$$

The value *c* depends only weakly on *k* and can be approximated by 0.2 for elements with Z > 20 /2/. Neglecting the N_{eff}^{s} term, the expression in then approximated according by /1/:

$$N_{eff}(\theta) = \sum_{i=1}^{N} (0.7 + 0.9 \left| \vec{\varepsilon} \cdot \vec{r} \right|^2)$$

Coordination number

α	N(O _{ax})	N(O _{eq})	
0°	1.08	4.60	
15°	1.20	4.48	
35°	2.00	4.00	
55°	3.02	3.39	
75°	3.05	2.92	

/1/ Citrin, P.H., Phys.Rev. B **31** 700 (1985) /2/ Teo, B.K., J. Am. Chem. Soc. **101** 2815 (1979)

Contact: Christoph Hennig Tel. (+33) 04 76 88 2005 hennig@esrf.fr The Rossendorf Beamline, ESRF - BM20 - CRG BP 220 F-38043 Grenoble France

www.fz-rossendorf.de