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Introduction The System
Crystal growth is a surface process The positive charge in the lipid headgroup tip and the negative charge excess on the mineral
P therefore Langmuir monolayers are ideal model surface lead to an adsorbed mineral monolayer at the liquid air interface while the bulk
systems viscosity is increased by a network of mineral particles. a Phospholipid: DPPC clay nanoparticles: Laponite RD®
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H.. : 19 20 21 25 23 24 25 26 The DPPC isotherms on sols show a behavior quite similar to cooling on normal water. This demonstrates the increased van der Waals interaction between the lipid
1E3; k o o chains due to the reduced surface fluctuations. In addition the rigidity of the lipid monolayer is improved so that higher surface pressures are accessible.
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