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We studied colloidal suspensions at different phases, using SAXS, XPCS, Two-colour light scattering (TCLS) techniques and ) ) .
ditcotobscryvations: Frederico ZONTONE & Abdellatif MOUSSAID
The inter-particle attraction in these systems is induced by the presence of hard sphere repulsion and depletion interactions due to ID10A - Soft Condensed Matter Group

presence of non-adsorbing polymer. The topology of the phase diagrams is known to depend on the volume fraction and on the ESRF

ratio of the polymer to colloid sizes, §. The measurements chart the development of the structure for the liquid, the crystal and the .

gel phases. For the Colloidal liquid, appearing at for & > 0.24, we find that while the local structure remains almost unchanged, moussald@esrf.fr

long-ranged fluctuations appear. At small size ratio, i.e. deep and narrow depletion attraction, two kind of Colloidal gel have |Collaborators
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o6 - For the 3 colloidal liquids, the main peaks of §(g) have similar amplitudes [4]
E % 2 % <] ?Long-ranged fluctuations appear in all liquids and increase as & is reduced,
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