X-Ray microdiffraction on cellulose fibres and wood under tensile stress **{**+C Klaas Kölln¹, Claas Behrend¹, ¹ Institut für Experimentelle und Angewandte Physik, Ingo Grotkopp¹, Martin Müller^{1*} Christian-Albrechts-Universität zu Kiel, D-24098 Kiel Martin Dommach², Sergio S. Funari², ² Max-Planck-Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam c/o HASYLAB Hamburg Manfred Burghammer³ Stefan V. Roth³

³ ID13, ESRF, F-38043 Grenoble

Cellulose – a fibrous biopolymer

* mmueller@physik.uni-kiel.de; http://www.ieap.uni-kiel.de/solid/ag-mueller

Cellulose fibres consist of crystalline parts surrounded by disordered regions.

The crystalline unit: microfibrils

Ø 2 - 20 nm

Flax fibres an example of highly oriented cellulose

The mechanical properties of cellulose are influenced by

DND ANGESSANDE MINOS DER CAU ZU KIEL

- hydrogen bonds
- (different for cellulose I IV) and • microfibril size and orientation (varies for different species).

In-situ stretching experiments X-ray microdiffraction at beamline ID13

- relation is calculated from the shift of the 004 reflection. The fibre and the microfibrils
- show an elastic behavior. Their Youngs moduli differ by a
- factor of three to four.

How do the rotation of the microfibrils and the straining of the crystal influence the mechanical properties of cellulose fibres?

> Project Pr 325/15-1 Project Mu 1673/2-3 Funding: **DFG**

fibre

piezo stretching cell for in situ X-ray scattering ering on single fibre

Micro- and nanostructure of softwood cell walls The microfibril angle (MEA)

X-ray diffraction possible.

The stretching apparatus of beamline ID13. It makes the simultaneous measurement of the macroscopic stress-strain

relationship of the fibre and the straining of the microfibrils using

Softwood cells have a diameter of roughly 50 µm and a length of several mm. The cell wall is a composite material of cellulose and matrix materials such as lignin and hemicellulose displaying unique mechanical properties.

lood cel

A key parameter for the mechanical

properties of wood cells

cellulose microfibrils

Norway spruce wood

What are the different mechanisms on the nanoscale that govern the mechanical properties of dry and wet wood?

Experiments on single flax fibres

ε (%)

Rotation of microfibrils

· A rotational motion of the

microfibrils leads to an

This ordering takes place

during the initial phase of

width of the 200 reflection. · The fiber shows well ordered and less ordered regions.

improvement of f.

Mesh scan over a single fibre

· Hermans' orientation function for the

microfibrils f_c is calculated from the

• The well ordered regions show no effect upon straining, while the less

ordered regions show a significant

strain.

straining.

increased orientational order (= alignment) with increasing

