In-situ observation of the recrystallization process
of massively transformed TIAl
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Low density, high specific yield strength, good oxidation resistance, and good creep properties at elevated temperatures make intermetallic TiAl-based
alloys top candidates as structural materials for advanced jet and automotive engines as well as for future hypersonic vehicles. Huge efforts are undertak-
en in modern research programs to relate the microscopic properties to the mechanical behavior in production and application processes. The mechanical
properties depend strongly on the composition, the admixtures and the thermo mechanical treatment of the alloy. Thus the ductility at room temperature
can be improved when the Al content lies in the range of 46-48 at.%. Normally such an alloy consists of ordered tetragonal g-TiAl (L10 structure) and
ordered hexagonal a2-Ti6AlI2-phases (DO19 structure). The typical microstructures upon thermal treatment are the globular and the fully lamellar colony
patterns. In fully lamellar materials the colonies consist of sequences of several g-phase lamellae with {111} interfaces and alternating twin orientation
(polysynthetically twinned) interrupted by single a2-phase lamellae with {0002} interfaces. Additionally, three different domain orientations are observed
in the g-lamellae with an orientation rotation of 120° around [111]. Typically the colony size is about 100 - 1000 pm with average thicknesses of

100 - 1000 nm of the glamellae and 50 nm for the az2-lamellae. Several at. % of Nb sitting substitutionally on Ti sites, so-called TNB material, may alter
the recrystallization processes and thus the microstructure and mechanical properties. Further, precipitates play a role in the mechanical strength as in B-
added material (TAB) or, as actually investigated in another research program, additives of C.

The microstructure does not only depend on the composition, but a lot on the thermo-mechanical treatment. Thus quenching from temperatures above
the a transition at Ta = 1320 K leads to microstructures, which depend on the speed of cooling. A very rapid process freezes the disordered a-phase
into the ordered a2-structure while a medium cool-down leads to a massively transformed g-phase, which is discussed in this article. Defect engineering
processes, however, do not stop at this point. More complicated microstructures are obtained when a mechanical process is superimposed to the heat
treatment such as uni-axial forging, extrusion, rolling or shear treatment where textures are developed according to the microscopic deformation mecha-
nisms.

The processes are most complex and their understanding combine the classical fields of engineering, physics, chemistry and crystallography. Therefore
characterization and measurements are necessary with the most different techniques as macroscopic force and strain measurements, hardness testing,
light- and electron microscopy, calorymetry as well as the diffraction methods with neutrons and X-rays, to mention but a few. In particular, high-energy
X-rays in the range of 100 keV and above can penetrate centimeters into light and medium heavy materials as investigated here, the high fluxes and
brilliances of modern sources giving raise to highest spatial and angular resolutions at high acquisition rates. The combination of the penetration power
into a bulky sample environment and the high number of photons available allow for sophisticated in-situ investigations as they have been performed in
this study on massively transformed TiAl.
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TI-Al Microstructures
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TI-Al Microstructures
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Diffraction setup with 95 keV at ID15b
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Diffraction patterns of different TiAl materials
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In-situ heating of massively transformed TiAl
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Small angle grain boundary at domain wa




Longitudinal evaluation - strain

- : g = Lot
g, e g, 8, E? — = gamma-111 1eflection:

. & = & o ; B0 = 000026188 £ 0,000]14

. | Kl =-97%8s-046+ 3407

K2 =-21998e-09+ 25210

* ol T

Fh w1ia| "

1 AN : i

L
&g

B

et

—— 111 =111
—&— 002 + 200
—@— 200 = 200

5 P s — .
AR AK =143 L shd
= B Lz
| | = . 1
= .
E ] LT _/L_ § b
= T =143
2 . P
S 100 — - S
i A fo5 MY i
— =
o MTA VEVEA 2 y ‘
= ¥ = = _
: i
£ L L BERE T
— - 12— o
E {HT 55 0 = 1| = = T
g - 3 35935 ¢
E ] 7 E _F'WE (IR I
= T _,!rhlk‘_‘____ ’E _H ;g [;:_'
200 — MT 75 *¢ w1 |— -4 15 =T
o o20 —n o
i - =] g
] M_ E _ %f__: %
i B il 4 E&E
J T 1022 °0 = 1L 4 o
i i i) %
| 0 ] =
T 1265 *¢ = 1L i
TEE 1227 ¢ vl 50
IIII|IIII|IIII|IIII|IIII||||||||||||||||||||||| |IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III
24 216 2.8 3.0 . 3.4 i 200 400 &0 200 1000 1200
reciprocal lattice vector G [A 7] temperature ["C]

EZRF usems meeting 2004 - (3 Klaus-Dieter LISS - hitpSfbusiness kdliss des



Temperature program

time [hours]
0 1 2 3 < 3

temperature [ C]

1400 —
1200 —:
1000 —:
300 —:
600 —:

400 —

10 §
time |10 s]

EZRF usems meeting 2004 - (3 Klaus-Dieter LISS - hitpSfbusiness kdliss des



Recrystallization through the o-phase
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Indexation of the oo and y-phases
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Results

MT material is stressed and has a high degree of disorder
chemical separation upon heating in the g-phase
coherent domain walls

stress between coexistent g and a-phases

strong recrystallization and huge grains in the a-phase
coherent recrystallization from the a- towards the g-phase

a-phase determines two twin directions with 3 domains in g-phase

the work is under publication and can soon be downloaded under

http://business.kdliss.de/

.kdliss.de/
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