Local Vibrational Modes in EuFe₄Sb₁₂ and Ni_{0.49}Fe_{0.01}Al_{0.50} Alloy

LEUPOLD O.¹, GRANDJEAN F.², LONG Gary J.³, HERMANN R.P.², RÜFFER R.¹, WILLE H.-C.¹, CHUMAKOV A.I.¹, PARLINSKI K.⁴, JIANU A.⁵, JOCHYM P.⁴ ¹ESRF, F-38043 Grenoble, France, ²University of Liège, B-4000 Sart-Tilman, Belgium, ³University of Missouri-Rolla, Missouri 65409-0010, USA, ⁴Institute of Nuclear Physics PAN, PL-31-342 Krakow, Poland, ⁵National Institute for Materials Physics, P.O. Box:M.G.-07, RO-76900 Bucharest, Romania

Nuclear resonance scattering offers the possibility of determining local electronic, magnetic, structural or dynamic properties. Herein we report on studies of the local vibrational density of phonon states (VDOS) in the filled skutterudite, EuFe₄Sb₁₂, and in the the Ni_{0.49}Fe_{0.01}Al_{0.50} alloy by applying the nuclear inelastic scattering (NIS) technique. Experiments were done at the nuclear resonance beamlines ID18 and ID22N at the ESRF. The filled skutterudites RM₄Sb₁₂ (where R = rare earth, and M = Fe or Co) exhibit promising thermoelectric properties, which are partly ascribed to the "rattling" rare earth atom in a cage formed by the M₄Sb₁₂ lattice. Our NIS data obtained on ¹⁵¹Eu in EuFe₄Sb₁₂ reveal a pronounced peak at ca. 7 meV, a low energy peak which is associated with the Einstein oscillator behavior of the Eu, see Figure 1. In contrast the ⁵⁷Fe VDOS obtained on the same sample does not exhibit any low energy peaks.

Figure 1: VDOS in EuFe₄Sb₁₂; full line: ⁵⁷Fe, dashed line: ¹⁵¹Eu normalized partial density of states.

<u>Figure 2</u>: full line: VDOS of 57 Fe in an alloy of Ni_{0.49}Fe_{0.01}Al_{0.50}; dotted line: calculations for Fe on the Al site, dash-dotted line: calculations for Fe on the Ni site.

For diluted Fe atoms in a NiAl alloy, *ab initio* calculations have predicted a localized vibrational mode at about 26meV. We measured the ⁵⁷Fe partial VDOS of a Ni_{0.49}⁵⁷Fe_{0.01}Al_{0.50} alloy with an energy resolution of about 0.5meV. Our results show (cf. Figure 2) two peaks at ca. 26meV. This can be interpreted as Fe substituting both Ni and Al, the latter giving rise to a localized mode at slightly higher energy than for Fe on the Ni site as confirmed by *ab initio* calculations also shown in Figure 2.