

Figures of merit

Third generation light sources are characterised by: Iow emittances high currents small ID gaps short bunches **High brilliance** $B \approx \frac{\text{photons/sec}}{\sigma_x \sigma'_x \sigma_z \sigma'_z} f(E,g,B)$ and spectral flux per unit surface

Performance limitations

These requirements may induce a significant deterioration of the photon beam quality:

Short lifetimes due to the high bunch density lead to a reduced integrated brilliance and to a non-constant heat load

 Blowing-up the vertical emittance or lengthening the bunch to increase the lifetime spoils the brilliance

Performance limitations (cont')

Collective effects limit the current and /or blow-up the longitudinal and transverse bunch dimensions which in turn degrades the brilliance

The trend towards lower gaps and the resulting vacuum chamber tapering contributes to the increase of the impedance and to the reduction of the current thresholds and associated brilliance

Light Sources survey

Drawn from the questionnaire sent to synchrotron radiation laboratories

21 competitors entered for the raffle

Somewhat arbitrary analysis

- 2nd and 3rd generation sources on an equal footing
- Some projects not included
- Different challenges for low and high energy machines

Energy range

Lifetime issues are more critical for low energy machines

> Gas scattering Touschek scattering

Radiation power handling is an issue for high energy machines

Operating modes

High intensity multibunch and time structure modes ⇒ difficulties to simultaneously serve the different user communities

Intensity trend

Having reached their design goals, the majority of sources in operation plan an intensity increase in their R&D programme

Enhanced importance of collective effects

Coupled bunch instabilities

Increase of resistive wall impedance with small gap IDs

 $Z \propto \frac{1}{b^3} \delta_{\text{s}} \sqrt{\frac{\omega}{\omega_0}}$

CBI: Resistive wall

Signature of RW instability

Cures

Pushing the spectrum of the unstable mode towards > 0 frequency region by chromaticity over-compensation

> Using a feedback system

CBI: Resistive wall (cont')

Small threshold currents ⇒large chromaticities

⇒lifetime reduction

CBI: Resistive wall (cont')

Coupled bunch instabilities (cont')

HOMs in RF cavities are the dominant source of instabilities for all machines

⇒Increase in transverse emittance and energy spread

Single bunch issues

Reduction of the threshold current due to the occurrence of mode merging at low chromaticity

Increased chromaticity
Dynamic
Acceptance
and lifetime reduction

Small gap vacuum vessels lead to a decrease of the threshold

Single bunch issues (cont')

Difficulties in achieving short bunches

Independence of bunch length on α and E at large currents

Harmonic cavities

More and more popular tool in low and medium energy machines to extend beam lifetime

Reducing the peak charge density by lengthening the bunch

Landau damping of CBI

Challenges for future machines

Challenges for future machines (cont')

Higher currents and lower gaps **0.5-1 A**, 3-4 mm?

- Mastering beam instabilities
 - HOM free cavity: validation of existing SC designs
 - Minimisation of impedance
 - Vacuum chamber material and fabrication, in-vacuum

Modelling of components, tapering of ID vessels

- > Maintaining beam quality
 - Long lifetimes
 - Beam sizes
 - Power handling

top-up injection blow-up due to instabilities absorbers, stops, pumping