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Outline

• Broadband impedance

• Narrowband impedance

• Computer modelling

• Examples
– Bellows

– Tapers

– BPM’s

– Resistive wall

– Cavities

– Kickers
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Impedance related effects

• Broadband

– M icrowave instability

– Transverse mode coupling

• Related to “effective”
impedance experienced by
a single bunch

– Short-range wakefield

» All vacuum
chamber
components

• Narrowband

– Coupled-bunch instabilities

• Related to narrow-band
resonant impedance

– Long-range wakefield

» RF cavities

» Resistive wall

• Heating

– Power deposited in a resistive
impedance may cause heating
and damage
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“Impedance police”

• Minimize beam impedance at the design stage

– Maintain instability thresholds above operating parameters

– Avoid heating of uncooled components

• Close interaction between physicists, engineers, and designers
– tapers

– flanges

– synchr. radiation masks

– BPM’s

– kickers

– resistive wall

– septum magnets

– beam scrapers

– pumping slots

– RF cavities

– etc … .
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Broadband impedance calculation

• Single-bunch effects

• Time-domain analysis

• Calculate wakefield over

length of bunch

• Not necessary to model all detail of structures

– Require that fields that can catch up with the beam be
properly included

• Dominated by end effects in many devices

» striplines, synchrotron radiation slots, …

• Loss factor

– Energy loss to the bunch self-induced field k = 

W z τ  ib τ  dτ
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Broadband impedance calculation

• Require “delta-function” or “Green’s function” wake for
inclusion in self-consistent singlebunch phenomena
modeling

• Particle tracking

• Numerical solution of Fokker-Planck equation

• Modal analysis from Vlasov equation

– Improvement over broadband impedance models

– Require wake from very short bunch to generate an effective
Green function

» Dense mesh

» Long run time
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Broadband impedance calculation

• Inductive wake

• Capacitive wake

• Resistive wake
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Narrowband impedance calculation

• Multi-bunch effects

• Important to include

detail of structures

• Frequency domain analysis
– Calculate resonant-mode

parameters

• F resonant, Q, R/Q, T, …

• Time domain analysis
– Calculate long-range wakefield

– Wake is calculated for lossless materials

• OK for heavily externally loaded structures

W longitudinal s  = - 
ωp

2
•
p=1

∞

 R
Q p

 ej
ωp

c
 s  e

-
ωp

2 Qp

 s

P ω  = Ib
2 ω  R ω•

beam
spectrum

 

 



Slide 9 John Corlett, Instabilities Workshop, ESRF,  March 2000

Computer modeling

• Time domain

– Wakefields

• “moving mesh” for short-
range wakes

– Loss factor

– F.T. to frequency domain

• resonant impedance
information

• Frequency domain

– F resonant

– Q

– R/Q

– Transit time T

– ...

• Boundary conditions

– E, H boundary conditions

• Symmetry planes

– Periodic boundary conditions

• Periodic structures (cavities)

– Waveguide boundary conditions

• Damping waveguides

– Resistively matched boundaries

• Broad-band match
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Computer modeling

• Finite-difference codes

– MAFIA, GDFIDL, URMEL,
ABCI, etc

– Rectangular meshing

• May be crude geometric
model

• Large memory demands

– Matrix includes points
outside “active” volume

• Many mesh points for
improved accuracy

• Finite-element codes

– HFSS, ANSYS, SOPRANO,
PRIAM, etc

– Efficient meshing with
polygons

• Good geometric fit

• Mesh only the active
volume

– Analysis less robust

• “ghost modes”

– Non-physical solutions

• Maxwells equations may
be solved explicitly on
rectangular mesh

• Boundary-element codes, etc

– Not commonly used in this
application
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2-D / 3-D

• 2-D

• Simple cylindrically symmetric
geometries

• Define azimuthal variation for
each computation run

– m=0 (monopole)

– m=1 (dipole) … etc

• Efficient use of memory
and CPU time

• 3-D

• Allows complex geometries
without longitudinal or
azimuthal symmetry to be
modeled

– Gobbles up memory and CPU
cycles
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Bellows

• Shield bellows with “smooth”
conductors

– Carry image currents

– Prevent coupling to volume
enclosed by bellows

• Must have some compliance to
allow bellows movement

Fingers

Bellows 
cavity

Bellows

Finger contact point
Spring fingers

Bellows

Tensioning
springs

Clamping
flange
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Bellows

• Unshielded bellows have strong
resonances

– May drive instabilities

– May be damaged by beam-induced
heating

• Shielded bellows difficult to model

– Intricate details of fingerstock

– Small changes in cross-section at
moving joints

• Generally approximate model as
solid with small step changes in
cross-section at sliding joints
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Tapers

• Strongly inductive at low frequencies

• Minimize angle / maximize length

– Smooth linear tapers as good as more complex shapes

• Generally model as pairs
– Energy loss from outward taper, gain from inward taper

• Beware of cross-talk with adjacent components

– May need to model longer sections of vacuum chamber

• Good agreement with theory for 2-D structures
– Wakefield sensitive to mesh size

• Ensure convergence

• Poor correlation extrapolating from 2-D to 3-D
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Tapers

• Sensitivity to mesh size

– 10:1 taper

– Ensure convergence as mesh
size reduced

• Cavity / tapers wakes

– Tapers dominate wake in this
caseaφ

∆z
 σs

∆z
 > 100
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BPM ’s

• High-frequency circumferential modes
dominate impedance

– Narrowband effects as well as low frequency
inductance and resistance

• Increase resonant frequency by making
smaller buttons

• De-Q resonance by introducing asymmetry

– D-shaped button or perturbation to couple
mode into coaxial line
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BPM ’s

• K-type • M-type
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Resistive wall

• Transverse

• Increasing radius helps but usually
not an option

• Use high-conductivity materials
where possible

–  ρ = 17.7 n! -m Cu, 33 n! -m Al, 900
n! -m st. st.

– Transverse coupled-bunch motion
dominated by resistive wall at low
frequency

• Lowest mode determined by tune

• Feedback systems may be required
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Resistive wall

• Longitudinal

– Short-range wake is strong for
very small vacuum chambers
and short bunches

• Resistive heating

– May demand cooling of
vacuum chambers
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RF cavities - frequency domain

• Details of mode parameters

– Must calculate many modes

• Not all of interest

– Damped cavities require careful analysis

• Kroll-Yu method

– Several runs with different waveguide lengths
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RF cavities - time domain

• Allows matched waveguide
boundaries

– Good for damped cavities

– Many modes sampled in one run

• Long wake required to resolve
modes

– Less accurate mode parameters

• Calculated wake is for lossless
materials

– OK if heavily damped
(externally loaded)
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HOM damping

• Longitudinal
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HOM damping

• Transverse
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Kicker structures

• End effects often adequate for broadband impedance

• Resonant effects

– Careful model including more structure details

– Beware of details!

• Parasitic resonances may be damped with antennae
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Total wake

• For NLC main damping rings
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Conclusions

• Computational tools for impedance calculation are highly
developed

• Several techniques available for many calculations

• Computing power now sufficient to allow complex
geometries

– 1,000,000 mesh points

– 100’s meters wake

• "  24 hrs CPU time

• Wakefield calculations for single-bunch effects
– Use Green function wake in simulation codes

• Simple to use F.T. to optimize HOM damping in cavities

• Frequency domain for devices with few resonances


