

Harmonic Cavities: the Pros & Cons

Jörn Jacob

Beam Instability Workshop, ESRF, 13th - 15th March 2000

Content

- Main motivation for harmonic cavities: $t_{Touschek}$
- *Harmonic cavities on existing light sources / achievements, problems*
 - NC passive cavities
 - NC active cavities
- Projects for SC harmonic cavities
- *Harmonic cavities for the ESRF ?*
- Pros & Cons
- Conclusions

Motivation for harmonic cavities

Penalizes few bunch operation

Beam Instability Workshop, ESRF, 13th - 15th March 2000

 $J.\ Jacob\,/\,3$

Harmonic Cavities for bunch lengthening

• Cavity at
$$f_{harm} = n f_{RF}$$
 (often $n=3$)

- Passive / active
- Normal/Super-conducting (NC/SC)
- Maximum bunchlength for:

$$V_{harm} = V_{opt}$$
$$\boldsymbol{f}_{harm} = \boldsymbol{f}_{opt}$$

Beam Instability Workshop, ESRF, 13th - 15th March 2000

 $J.\ Jacob\,/\,5$

 $J.\ Jacob\,/\,8$

Over stretching => formation of two bunches

Beam Instability Workshop, ESRF, 13th - 15th March 2000

NC passive harmonic cavities

• The beam drives V_{harm}

=> multibunch operation ($I_{beam} > I_{minimum}$)

=> V_{harm} controlled by Cavity tuning $(typ.: f_{harm} \gg n f_{RF} + f_0/3)$ => $f_{harm} = f_{opt}$ only possible at one current

• MAX II: $E_{max} = 1.5 \text{ GeV}, I_{beam} = 250 \text{ mA} -> 100 \dots 70 \text{ mA}$ $f_{RF} = 500 \text{ MHz}$ 4 copper pillbox HC's, $f_{harm} = 3 f_{RF}$, 2 tuners

Achievements:

@ t_{Life} doubled (I x t_{Life} : 3 Ah @ 5...6 Ah) @ Landau damping of multibunch instabilities (not fully stable): @ Energy spread: 0.7 x 10⁻³ for $I_{beam} = 0$ $4...5 \times 10^{-3}$ at nominal Ibeam for $V_{harm} = 0$ 1.1×10^{-3} with Landau damping

[Å. Andersson, M. Georgsson et al.]

Beam Instability Workshop, ESRF, 13th - 15th March 2000

NC passive harmonic cavities (continued) • ALS: $E_{max} = 1.9 \text{ GeV}, I_{beam} = 400 \text{ mA} \otimes 200 \text{ mA}, LFB \& TFB$ $f_{RF} = 500 \text{ MHz} \text{ 5 Cu reentrant HC's}, f_{harm} = 3 f_{RF} / 2 \text{ tuners}, HOM \text{ absorber}$ Achievements:

 $\begin{array}{l} \text{@in experiment: } \boldsymbol{t}_{Life} \text{ increase by factor 2.5 } (\boldsymbol{t}_{Life}: 4 \ h \ \circledast \ 10 \ h) \\ \boldsymbol{t}_{Length}: 55 \ \And \ 120 \ ps, \ f_s: 11.5 \ \And \ 5 \ kHz \\ \rightarrow \text{LFB} \ f_s \ \text{filter} \ (\text{now } 4 \ kHz) \ \text{limits } \boldsymbol{Dt}_{Length-max} \\ \text{@in operation: } 50\% \ \text{increase in } \boldsymbol{t}_{Life} \ \And \ 6 \ h \ (2 \ cavities \ tuned \ in) \\ \text{@eno energy spread} => \text{detuning of HC-HOM} \ (TM011 \ at \ ALS) \end{array}$

Problems:

@ Users require 20 % gap in filling \rightarrow transient beam loading

 \rightarrow strong beam and Voltage f modulation

 \rightarrow less average bunch lengthening

 \rightarrow TFB: heterodyne \rightarrow homodyne receiver: solved the problem

 \rightarrow LFB: f_s modulation \rightarrow factor 6 at 3 GHz detection frequency

 \rightarrow feedback saturates if $|\mathbf{Df}_s| > 15^{\circ}$ [J. Byrd et al.]

Beam Instability Workshop, ESRF, 13th - 15th March 2000

• BESSY II:

 $f_{RF} = 500 MHz$

 $E_{max} = 1.9 \text{ GeV}, I_{beam} = 220 \text{ mA}, LFB \& TFB$ 4 Cu Pillbox HC's, $f_{harm} = 3 f_{RF} / 2$ tuners

Achievements (still in commissioning):

BESSY II:

@TFB: operational

@LFB: not yet compatible (filter bandwidth)

 ∞ Phase transients with gap: max 50°

@HOM problems still present:

Coupled bunch mode with some bunch shape oscillation

Beam Instability Workshop, ESRF, 13th - 15th March 2000

NC active harmonic cavities

NSLS VUV: E = 0.8 GeV f_{RF} = 52.9 MHz, f_{harm} = 4 f_{RF}
 @ Operation alternatively in bunch *lengthening* or *shortening* mode
 @ Powered cavities allow operation near V_{opt}, f_{opt} for any I_{beam}
 @ No Beam power

Latest Figures:

Beam Instability Workshop, ESRF, 13th - 15th March 2000

• NSLS VUV / Slow tuning, amplitude and phase feedback Principle using a Complex Phasor Modulator:

@ Voltage error signal @ real part a_r regulated to "zero" by tuning

 $=> \mathbf{f}_{harm} = -90^{\circ}$ (and not $\mathbf{f}_{ont} \gg -93^{\circ}$)

@ In *lengthening*, phase error signal from beam PU @ *imaginary part a*_i (at $\mathbf{f}_{harm} \gg \mathbf{f}_{opt}$, due to flat RF potential[®] GAIN $\mathbf{f}_{beam}/\mathbf{f}_{Vcav} \gg -4.5$)

@ In *shortening*, phase error signal from cavity @ *imaginary part a_i*

 $a_r + j a_i$ amplified and fed to the cavity

@System can be switched to standard tuning for *passive* operation @Stable operation in *shortening* mode difficult (high beam loading) (R) constant bunch length, but limited to 600 mA

> [S. L. Kramer, N. Towne et al.] J. Jacob / 20

Beam Instability Workshop, ESRF, 13th - 15th March 2000

• NSLS VUV / Observed related instabilities:

@Lengthening mode: Landau Damping of coupled bunch instabilities

@Injection: partially stretched mode => needs LFB

@ Occurrence of *non-rigid bunch instabilities* in particular if over-stretched:
 ® chaotic appearance of broad, strong sidebands
 ® beam lost if high I_{beam}

@For nearly optimum lengthening: peak beam response at $1.1 f_{s0}$ to $1.4 f_{s0}$

- [®] insensitive to Ibeam, Cavity tuning
- [®] sensitive to V_{harm}

[S. L. Kramer, N. Towne et al.]

Beam Instability Workshop, ESRF, 13th - 15th March 2000

 $J.\ Jacob\,/\,21$

• NSLS VUV: Stretched bunch shapes = *f*(*small variations of RF potential*)

3 Reasons:

@ Shape very sensitive to ϕ_{harm} near V_{opt} , f_{opt}

@Gap in filling against ion trapping:

Phase transients

œGap in filling:

- [®] additional revolution harmonics
- excite HOMs
- *®* different potential distortion for different bunches

7 / 9 bunches filled, $I_{beam} = 1000 \text{ mA}$

Beam Instability Workshop, ESRF, 13th - 15th March 2000

Super ACO: E = 0.8 GeV $f_{RF} = 100 \text{ MHz}$, $f_{harm} = 5 f_{RF}$

Bunch shortening for FEL operation and time resolved experiments @ Shortening by a factor up to 3.5 achieved ($f_s: 14 \otimes 40 \text{ kHz}$)

New types of instabilities observed:

M Wertical single bunch instability at 10 mA/bunch: no sensitivity to \mathbf{n}_z , \mathbf{x}_z , V_{harm}

 \bigcirc Vertical TMCI starting at 30 mA, m=0 and -1 modes merging at 40 mA: cured by high \mathbf{x}_{τ} : +2.5 @ 4

@ Interference between 2 longitudinal single bunch oscillations

- Low frequency sawtooth oscillations (< 300 Hz), at any current
- High frequency oscillations at mainly f_s and $2f_s$, only between 2 and 8 mA/bunch

[G. Flynn et al.]

Bunch lengthening mode:

- Landau damping of LCBI R
- R expected Robinson^{II} instability ?

ESRF

Beam Instability Workshop, ESRF, 13th - 15th March 2000

[M.P. Level, M. Georgsson, et al.]

SC passive cavities

- Elettra, SLS, ... collaboration project with CEA-Saclay (2 GeV) (2.4 GeV) $f_{RF} = 500 \text{ MHz}, f_{harm} = 1500 \text{ MHz}$
 - B HOM free harmonic cavities = scaling of 352.2 MHz SOLEIL cavities (pair of cavities within a single cryostat)
 - [®] Tuning angle $y \gg 90^\circ => P_{beam} \gg 0$, and as for NSLS: $f_{harm} \gg 90^\circ$
 - [®] Simple amplitude control by frequency tuning such as:

$$V_{harm} \gg I_{beam} (\text{R/Q}) f_{harm} / \mathbf{g}_{harm}$$

- [®] Expected *Bunch lengthening* by a *factor 4* $(V_{harm} < V_{opt})$
- [®] Passive operation down to very low currents,
- [®] However, possible Robinson instability on $m f_s$ for low d_{harm} at low I_{beam}
- Phase transients also expected with SC cavities
- SRRC: abandon NC harmonic cavities ® required space, HOMs,...

Feasibility study for SC harmonic cavities

Beam Instability Workshop, ESRF, 13th - 15th March 2000

[P. Marchand, M. Svandrlik, A. Mosnier et al.]

[K.T. Hsu]

J. Jacob / 24

 $(\mathbb{R} \mid J. Bvrd)$

Harmonic Cavity for the ESRF?

$$f_{RF} = 352.2 \text{ MHz}, \text{ Example: } f_{harm} = 3 f_{RF}$$

Operation modes:
A Reason for an HC ?

- Multibunch at 200 mA, $\mathbf{x}_{v} = 0.4 \text{ to } 0.5 \quad \mathbf{t}_{Life} = 60 \dots 70 \text{ } h => NO$
- 16 bunch at 90 mA (5.5 mA/b): $\mathbf{x}_v = 0.6$ $\mathbf{t}_{Life} = 12 h$ => yesSingle bunch at 15 mA: $\mathbf{x}_v = 0.9$ $\mathbf{t}_{Life} = 4 h$ => yes
- Optimistic assumption *Lengthening factor 6*:

Current per bunch	10 mA	15 mA	25 mA		Longer bunches
Lengthening factor from BBR only	3.6	4.2	5.4		lower <i>x</i>
Lengthening factor from BBR and 3rd harmonic cavity	6.2	6.6	7.6		
Net gain in bunch length with a harmonic cavity	+ 72 %	+ 57 %	+ 41 %	-	$\frac{\text{more gain in}}{\boldsymbol{t}_{Life}} \text{ than from}$ \boldsymbol{Dt}_{Length}

Beam Instability Workshop, ESRF, 13th - 15th March 2000

Harmonic Cavity for the ESRF ? (continued)

- Tracking simulations @ unchanged energy spread with HC / μ -wave instability
- More sensitive to HOM driven Longitudinal Coupled Bunch Instabilities:

Beam Instability Workshop, ESRF, 13th - 15th March 2000

Harmonic cavities: Pros & cons

Points of debate for the subsequent working group discussions

Harmonic cavities: Pros & cons, (continued)						
Effects in bunch lengthening:	Consequences:	Pro / Con				
• Difficult to control V_{opt} , f_{opt}	Imited bunch lengthening	-				
	Over-stretching <i>P</i> non rigid bunch instability (NSLS)	•				
• RF slope $@$ zero: Smaller f_s	 Single bunch fast head tail (TMCI) : lower threshold ? [S.Myers, Y.C. Chin, CERN] 	•				
	R LCBI: lower thresholds	-				
	More sensitivity to low frequency noise / power supplies	•				
• Distorted RF potential: Spread of f_s	B Landau damping for: LCBI, TMCI ?, transverse instabilities with m ≠ 0 ?	+				
• More impedance (BBR, HOM)	Bad for all kind of instabilities	-				
	Robinson stability to be checked	Ο				

Harmonic cavities: Pros & cons, (continued)

Resistive wall instability:

@Smaller spectral width [®] less chromaticity needed to shift the modes or

@Less overlap with BBR [®] less damping ?

Operation in bunch shortening:

@NSLS: current limited by slow RF feedback stability
@Super ACO: new types of instabilities @ deserve further investigations
@No experience from low emittance machines

+

Conclusion

NC passive harmonic cavities:

@ sufficient voltage for low or medium energy machines /multibunch operation @ tuning not easy to handle for simultaneous *Voltage* and *HOM* control @ operate mostly *below* V_{opt} @ Gain in *Lifetime* by typically a *factor 2 to 2.5* => good for these machines !

NC active harmonic cavities:

œallow operation at low current (e.g. single bunch operation) œoperation in bunch shortening demonstrated

SC HOM free harmonic cavities:

@only way for high energy machines, where interest is mainly for high I/bunch @no major problems with HC HOMs, Robinson, ...

œtuning should be easier

œstill needs R&D to check performance, reliability and operational costs

Beam Instability Workshop, ESRF, 13th - 15th March 2000