Skip to main content

The effect of Hydrophile Topology in RAFT-Mediated Polymerisation-Induced Self-Assembly

18-07-2019

The effect of Hydrophile Topology in RAFT-Mediated Polymerisation-Induced Self-Assembly

  • Share

Abstract

Polymerization‐induced self‐assembly (PISA) was employed to compare the self‐assembly of different amphiphilic block copolymers. They were obtained by emulsion polymerization of styrene in water using hydrophilic poly(N‐acryloylmorpholine) (PNAM)‐based macromolecular RAFT agents with different structures. An average of three poly (ethylene glycol acrylate) (PEGA) units were introduced either at the beginning, statistically, or at the end of a PNAM backbone, resulting in formation of nanometric vesicles and spheres from the two former macroRAFT architectures, and large vesicles from the latter. Compared to the spheres obtained with a pure PNAM macroRAFT agent, composite macroRAFT architectures promoted a dramatic morphological change. The change was induced by the presence of PEGA hydrophilic side‐chains close to the hydrophobic polystyrene segment.