X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD)

and

X-ray Magnetic Imaging (PEEM, ...)

Jan Vogel Institut Néel (CNRS, UJF), Nanoscience Department Grenoble, France

- X-ray (Magnetic) Circular and Linear Dichroism in Absorption
- Sum rules: determination of orbital and spin moments
- XMCD and XMLD for element-selective magnetic imaging

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy

K-edge: 1s \rightarrow empty *p*-states L₁-edge: 2s \rightarrow empty *p*-states L_{2,3}-edges: 2p_{1/2, 3/2} \rightarrow empty *d*-states M_{4,5}-edges: 3d_{3/2, 5/2} \rightarrow empty *f*-states

 $\begin{array}{l} \mbox{Spin-orbit coupling: } l \geq 1 \\ \mbox{Spin parallel/anti-parallel to orbit:} \\ j=1+s, 1-s \\ p \rightarrow 1/2, 3/2 & d \rightarrow 3/2, 5/2 \end{array}$ $\begin{array}{l} \mbox{Branching ratios: -j \leq m_j \leq j} \\ p_{1/2} \rightarrow m_j = -1/2, 1/2 \\ p_{3/2} \rightarrow m_j = -3/2, -1/2, 1/2, 3/2 \\ \mbox{Intensity ratio } p_{3/2} : p_{1/2} = 2 : 1 \\ d_{5/2} : d_{3/2} = 3 : 2 \end{array}$

Detection of X-ray Absorption Spectroscopy

X-ray Dichroism in Absorption

Polarization dependence of X-ray Absorption Spectra

X-ray Linear Dichroism: difference in absorption for linearly polarized light \perp and // to quantization axis.

1846 - **M. Faraday**: polarisation of visible light changes when transmitted by a magnetic material

1975 - Erskine and Stern - first theoretical formulation of XMCD effect excitation from a core state to a valence state for the $M_{2,3}$ edge of Ni.

1985 - Thole, van de Laan, Sawatzky - first calculations of XMLD for rare earth materials

1986- van der Laan - first experiment of XMLD

1987 - G. Schütz et al. - first experimental demonstration of the XMCD at the K-edge of Fe

X-ray Absorption Edges and Magnetism

Rare Earths (4f materials) : $M_{4,5}$ -edges (3 $d \rightarrow 4f$) $L_{2,3}$ -edges (2 $p \rightarrow 5d$)

Transition Metals L_{2,3}-edges $(2p \rightarrow 3d)$ K-edge $(1s \rightarrow 4p)$

X-ray Absorption Spectroscopy

Absorption cross-section :

 $w_{abs} = (2\pi/h) | < \Phi_f |T | \Phi_i > | ^2 \rho_f(E_{hv} - E_i)$ Fermi 's Golden Rule

One electron approximation : multiple scattering and bandstructure effects dominate the spectra Transitions to delocalized states (L_{2.3} of metallic 3d, K-edges)

Many-body approximation (multiplets) : spectra dominated by e⁻ - e⁻ and electron-hole interactions. Transitions to localized states (L_{2,3} of ionic 3d, Rare-Earth M_{4,5})

X-ray Absorption Spectroscopy : many-body effects

© J.B. Goedkoop 2004

Dichroism

$\Delta J \setminus q$	-1	0	1
-1	$\frac{J(J-1)-(2J-1)M+M^2}{2J(2J+1)(2J-1)}$	$\frac{J^2 - M^2}{J(2J+1)(2J-1)}$	$\frac{J(J-1)+(2J-1)M+M^2}{2J(2J+1)(2J-1)}$
0	$\frac{J(J+1)-M-M^2}{2J(2J+1)(J+1)}$	$\frac{M^2}{J(2J+1)(J+1)}$	$rac{J(J+1)+M-M^2}{2J(2J+1)(J+1)}$
1	$\frac{(J+1)(J+2)+(2J+3)M+M^2}{2(2J+3)(2J+1)(J+1)}$	$\frac{(J+1)^2 - M^2}{(2J+3)(2J+1)(J+1)}$	$\frac{(J+1)(J+2) - (2J+3)M + M^2}{2(2J+3)(2J+1)(J+1)}$

$$\left(\begin{array}{ccc}J & 1 & J'\\ -M & q & M'\end{array}\right)^2$$

Squared 3J-symbols:

For a ground state $|J,M\rangle$ and for every ΔJ :

 $\sigma^{ ext{q=1}}$ - $\sigma^{ ext{q=-1}}$ \propto M

If several M_j states are occupied:

 $\begin{array}{l} \mathsf{XMCD} \propto \mathsf{<}\mathsf{M}_{\mathsf{J}}\mathsf{>} \\ \mathsf{XMLD} \propto \mathsf{<}\mathsf{M}_{\mathsf{J}}^{2}\mathsf{>} \end{array}$

XMCD proportional to the magnetic moment of the absorbing atom
Element selective probe of magnetic ordering

Dichroism

Magnetic field \rightarrow (2J + 1)-fold degeneracy lifted (Zeeman-splitting)

Yb (4f¹³)Hund's rules :L = 3 $S = \frac{1}{2}$ $\rightarrow J = 7/2$

Energy of M_J - levels: $E_M = -g_{\alpha J}\mu_B HM$

Occupation of M_i-levels: Boltzmann-distribution

T = 0K: only lowest lying level ($M_J = -J$) occupied

Dichroism : Yb M_{4,5}- edges

J.B. Goedkoop, Ph.D. Thesis, 1988

Dichroism : Dy M_{4,5}- edges

XAS spectra and XMCD vs reduced temperature $T_R = kT / g_{\alpha J} \mu_B H$

Dichroism : delocalized states, two-step model

One electron picture: transitions from 2p to 3d band split by exchange in $3d^{\uparrow}$ and $3d^{\downarrow}$

 $|I, m_{I}, s, m_{s}\rangle = a_{mI} Y_{I,mI} |s, m_{s}\rangle$

Dichroism : delocalized states, two-step model

It can be calculated (Bethe and Salpeter) that:

 $|<2,2 |P_1|1,1>|^2 = 2/5$ $|<2,1 |P_1|1,0>|^2 = 1/5$ $|<2,0 |P_1|1,-1>|^2 = 1/15$

$$|^{\uparrow} = 1/3(|<2,1|P_1|1,0>|^2 + 2/3|<2,0|P_1|1,-1>|^2) R^2 =$$

= (1/3 * 1/5 + 2/3 * 1/15) R² = 1/9 R²

$$|^{\downarrow}$$
 = 2/3 |<2,2 |**P**₁|1,1> |² + 1/3 |<2,1 |**P**₁|1,0> |² R²
= (2/3 * 2/5 + 1/3 * 1/5) R² = 1/3 R²

$$|^{\uparrow}/(|^{\uparrow} + |^{\downarrow}) = 0.25$$
 LCP at the L₂ edge
 $|^{\downarrow}/(|^{\uparrow} + |^{\downarrow}) = 0.75$

 $|^{\uparrow}/(|^{\uparrow} + |^{\downarrow}) = 0.75$ RCP at the L₂ edge $|^{\downarrow}/(|^{\uparrow} + |^{\downarrow}) = 0.25$

Dichroism : delocalized states, two-step model

- Step 1 : spin-polarised electrons emitted by the spin-orbit split 2p band 75% spin down and 25% spin up electrons at the L₂-edge with LCP light 37.5% spin down and 62.5% spin up electrons at the L₃-edge with LCP light
- Step 2: the exchange split *d*-band acts as spin-detector.

XMCD sum rules : orbital moment sum rule

Sum rules relate dichroism and total absorption to the ground-state orbital and spin magnetic moment of the probed element and shell:

 $L_{2,3}$ -edges of Fe \rightarrow Fe 3*d*-moments.

Orbital moment sum rule:

 $<L_z> = [2l(l+1)(4l+2-n)]/[l(l+1)+2 - c(c+1)] \bullet$

$$\int \int_{j_{+}+j_{-}} d\omega \,(\mu^{+} - \mu^{-}) \,/ \int_{j_{+}+j_{-}} d\omega \,(\mu^{+} + \mu^{-} + \mu^{0}) J$$

l = orbital quantum number of the valence state c = orbital quantum number of the core state n = number of electrons in the valence state

 $\mu^+(\mu^-)$ = absorption spectrum for left (right) circularly polarized light.

 μ^{0} = absorption spectrum for linearly polarized light, with polarization parallel to quantization axis.

 $j^+(j^-) = (l + 1/2)$ resp. (l - 1/2) absorption (ex. $2p_{3/2}, 2p_{1/2})$

B.T.Thole *et al.*, Phys.Rev.Lett. 68, 1943 (1992) M.Altarelli, Phys.Rev.B 47, 597 (1993)

XMCD sum rules : orbital sum rule

institu

For L_{2,3}-edges
$$c = 1$$
 (2 p), $l = 2$ (d):
 $<$ L_Z $> = 2(10-n) \bullet (\Delta L_3 + \Delta L_2)$
 $/\int_{L_{3}+L_2} d\omega (\mu^+ + \mu^- + \mu^0) J$

$$q = \Delta L_3 + \Delta L_2$$

$$r = \mu^+ + \mu^- = (2/3)(\mu^+ + \mu^- + \mu^0)$$

$$< L_z \ge 4q (10-n) / 3r$$

C.T.Chen et al., PRL 75, 152 (1995)

Spin moment sum rule

$$<\mathbf{S}_{z}>+c_{2}(n)<\mathbf{T}_{z}>=c_{1}(n)[\int_{j^{+}}d\omega (\mu^{+}-\mu^{-})-[(c+1)/c]\int_{j^{-}}d\omega (\mu^{+}-\mu^{-})]/$$
$$\int_{j^{+}+j^{-}}d\omega (\mu^{+}+\mu^{-}+\mu^{0})]$$

$$c_{l}(n) = 3c(4l+2-n)/[l(l+1)-2-c(c+1)]$$

$$c_{2}(n) = \{l(l+1)[l(l+1)+2c(c+1)+4]-3(c-1)^{2}(c+2)^{2}\} / 6lc(l+1)(4l+2-n)$$

 $<T_z>$ = expectation value of magnetic dipole operator

 $T = S - r (r \bullet s) / r^2$

which expresses the anisotropy of the spin moment within the atom

For L_{2,3}-edges:

$<\!\!\mathbf{S}_{\mathbf{Z}}\!\!>+(7/2)<\!\!\mathbf{T}_{\mathbf{Z}}\!\!>=(3/2)(10\text{-}n)[(\Delta L_3 - 2\Delta L_2)/\int_{L_3+L_2} d\omega \,(\mu^+ + \mu^- + \mu^0)]$

P. Carra et al., Phys. Rev. Lett. 70, 694 (1993)

XMCD sum rules : sum rule for spin moment

 $<\mathbf{S}_{z}>+(7/2)<\mathbf{T}_{z}>= (3/2)(10-n)[(\Delta L3 - 2\Delta L2)/\int_{L3+L2} d\omega (\mu_{+} + \mu_{-} + \mu_{0})]$

$$= (3/2)(10-n)(p - 2 (q-p))/(3/2)r =$$
$$= (3p - 2q)(10-n)/r$$

C.T.Chen et al., PRL 75, 152 (1995)

- Background subtraction to separate $2p \rightarrow 3d$ from other transitions

- Number of holes *n* not accurately known
- T_z can be important in low-dimensional systems
- For application of spin sum rule, L_3 and L_2 edges have to be sufficiently separated.

institul

Peak position, intensity: electronic properties

Oscillations after peak : crystallographic structure

XMCD sum rules : application to Pd/Fe multilayers

TABLE I. Values for orbital, spin, and total moments per Pd atom for the different multilayers. The values are obtained using sum rules on our circular dichroism data.

	$\langle L_z\rangle~(\mu_B)$	$\langle S_z\rangle~(\mu_B)$	Total moment $\langle \mu_B \rangle$	$\langle L_z \rangle / \langle S_z \rangle$
Pd(2 AL)/Fe(8 AL)	0.04 ± 0.01	0.17 ± 0.04	0.38 ± 0.08	$0.25{\pm}0.02$
Pd(4 AL)/Fe(8 AL)	0.02	0.15 ± 0.03	0.32 ± 0.06	0.13
Pd(8 AL)/Fe(8 AL)	0.02	$0.12{\pm}0.03$	0.27 ± 0.06	0.16
Pd(14 AL)/Fe(10 AL)	0.01	0.07 ± 0.02	0.15 ± 0.04	0.09

J. Vogel et al., Phys.Rev.B 55, 3663 (1997)

XMCD sum rules : Orbital magnetic moments and anisotropy

Perpendicular Magnetic Anisotropy \leftrightarrow magnetocrystalline anisotropy (MCA) (symmetry breaking and strain at the interface)

 $E_A \propto -\xi (m_{orb}^{\perp} - m_{orb}^{\parallel})$ (Bruno, Phys.Rev.B 39, 865 (1989))

first experimental demonstration of orbital moment anisotropy

D.Weller et al., Phys. Rev. Lett. 75 (1995)

Single Co adatoms and particles MBE deposited on Pt(111) surfaces

P. Gambardella et al., Science 300, 1130 (2003)

STM image of isolated Co adatoms (8.5 nm x 8.5 nm) Large difference of in-plane and out-ofplane saturation field : very large Magnetic Anisotropy Energy

Single Co adatoms and particles MBE deposited on Pt(111) surfaces

P. Gambardella et al., Science 300, 1130 (2003)

Single Co adatoms and particles MBE deposited on Pt(111) surfaces

P. Gambardella et al., Science 300, 1130 (2003)

Sum rules : $\langle L \rangle = 1.1 \pm 0.1 \ \mu_B$ for isolated Co adatoms (L = 0.15 \ \mu_B Co-hcp) (L = 0.29 \ \mu_B 1ML Co/Pt)

Reduced coordination of isolated atoms on top of a flat surface \rightarrow d-electron localisation, increase of atomic character

From element-selective XMCD magnetization curves (up to 7 Tesla): very large magnetic anisotropy energy (MAE)

 $K = 9.3 \pm 1.6 \text{ meV/atom}$

(K= 1.8 meV/Co atom in SmCo₅) (K= 0.3 meV/atom in Pt/Co multilayers)

XMCD sum rules : Orbital magnetic moments and anisotropy

Increase of particle size : progressive quenching of orbital moment and consequent decrease of MAE

Twisted phase of the orbital-dominant ferromagnet SmN in a GdN/SmN heterostructure

J. F. McNulty,^{1,*} E.-M. Anton,¹ B. J. Ruck,¹ F. Natali,¹ H. Warring,¹ F. Wilhelm,² A. Rogalev,² M. Medeiros Soares,² N. B. Brookes,² and H. J. Trodahl¹

¹The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

²ESRF-The European Synchrotron, CS40220, F-38043 Grenoble Cedex 9, France

5.5 nm of SmN Probing depth Total Electron Yield ~ 2-3 nm Probing depth Total Fluorescence Yield ~ 100-200 nm