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- Diffraction techniques (X-rays, neutrons) are used to investigate crystalline solids, 
engineering materials, liquids, thin films, … 

- Whatever the technique used (conventional powder or single crystal diffraction, small 
angle scattering, reflectometry, …) all of these refer to the coherent elastic scattering 
of a X-ray or neutron beam 

- This lecture will focus on crystallography, i.e. the study of crystalline solids, which are 
described by infinite translational symmetry 

- The scattered X-ray or neutron beams contain information which allow to reveal the 
3-dimensional arrangement of atoms and magnetic moments 

Scope of the lecture
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Outline
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・Crystallography 
Direct lattice, symmetry operations,  
reciprocal lattice, Miller indices, ... 

・Interaction neutron-sample 
scattering by a potential, scattering length, form 
factor, …  

・Diffraction condition 
Bragg’s law, Laue condition, structure factor

・Symmetry in reciprocal space 
Friedel law, Laue classes, systematic absences 
 

・Magnetic structures  
types of magnetic order, magnetic symmetry, 
symmetry analysis, irreducible representations 

・Diffraction techniques  
powder diffraction, single crystal diffraction, Laue 
diffraction, … 
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Motivation
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When waves (water, light, neutrons, electrons, …) pass through two slits whose distance 
is in the order of the wavelength, the scattered waves will interfere.  
The interference scheme gives information about the distance and size of the slits. 

Particles like neutrons can be associated 
with a de Broglie wavelength which is 1.8 Å 
for thermal neutrons.

Interatomic distances in solids are in the 
order of a few Ångstroms. 

Neutrons are ideal to reveal the atomic arrangement in crystalline solids!  
How to describe a crystalline material?
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Direct lattice
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An ideal crystal is an infinite sequence of identical structure units in 3D space. 

periodic structure

crystal = lattice + basis

infinite lattice of 
equivalent points

structure unit on 
each point

NaCl structure:

lattice vectors
OK

not OK
centered cell
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Direct lattice
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An ideal crystal is an infinite sequence of identical structure units in 3D space. 

periodic structure

crystal = lattice + basis

infinite lattice of 
equivalent points

structure unit on 
each point

NaCl structure:

lattice vectors
OK

not OK
centered cell

Wigner-Seitz cell
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Direct lattice
Crystal systems
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Crystal system Laue class

triclinic a≠b≠c, 𝞪≠𝞫≠𝜸

monoclinic a≠b≠c, 𝞪=𝜸=90°, 𝞫≠90°

orthorhombic a≠b≠c, 𝞪=𝞫=𝜸=90°

tetragonal a=b≠c, 𝞪=𝞫=𝜸=90°

trigonal a=b=c, 𝞪=𝞫=𝜸≠90°

hexagonal a=b≠c, 𝞪=𝞫=90°, 𝜸=120°

cubic a=b=c, 𝞪=𝞫=𝜸=90°
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Direct lattice
Centering translations     14 Bravais lattices
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Centering type Symbol Translations

primitive P

one-face centered A 
B 
C

x, y+1/2, z+1/2 
x+1/2, y, z+1/2 
x+1/2, y+1/2, z

body centered I x+1/2, y+1/2, z+1/2

face centered F x, y+1/2, z+1/2 
x+1/2, y, z+1/2 
x+1/2, y+1/2, z

triclinic monoclinic

ortho- 
rhombic

tetra- 
gonal

hexa- 
gonal

tri- 
gonal

cubic
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Direct lattice
Symmetry operations
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Rotations (order n: 2𝜋/n) Mirror planes (m) Inversion (  )1̄

Roto-inversion (  )n̄ Screw axes (rot + trans) Glide planes (mirror + trans)
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Magnetic symmetry

Magnetic symmetry operations = “usual” crystallographic symmetries + time inversion 

A magnetic moment transforms like an axial or pseudo vector

2: µ↵ k 2 conserved, µ↵ ? 2 inverted

2’: µ↵ ? 20µ↵ k 20 inverted, conserved

m: 

conserved, invertedm’: 

inverted, conservedµ↵ k m

µ↵ k m µ↵ ? m0
µ↵ ? m

Direct lattice
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Magnetic symmetry

Magnetic moments on special Wyckoff positions have less degrees of freedom. 

   on 2’        only µ?µ

Magnetic structures

Not using the magnetic symmetry is like treating the crystal structure in P1!

   on 2       only µ µk
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Direct lattice
Symmetry operations
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0

@
x

0

y

0

z

0

1

A =

0

@
R11 R12 R13

R21 R22 R23

R31 R32 R33

1

A ·

0

@
x

y

z

1

A+

0

@
t1

t2

t3

1

A

Seitz notation: (R|t)

Symmetry contained in the coordination triplet: 
e.g. 21 screw axis along c: -x, -y, z+1/2

Mathematical description (polar vectors):

Axial vectors:

0

@
u0

v0

w0

1

A = det(R) · T ·

0

@
R11 R12 R13

R21 R22 R23

R31 R32 R33

1

A ·

0

@
u
v
w

1

A+

0

@
t1
t2
t3

1

A



Hercules Specialized Courses 18 | Navid Qureshi | ILL | Elastic neutron scattering

Direct lattice
Space groups
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http://it.iucr.org/

Combining the 14 Bravais lattices with 
all symmetry operations leads to 230 
space groups. 

Including the magnetic symmetry 
leads to 1651 Shubnikov groups.
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Direct lattice
Space groups
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space group symbol

crystal class

symmetry operations



Hercules Specialized Courses 18 | Navid Qureshi | ILL | Elastic neutron scattering

Direct lattice
Space groups
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space group symbol

crystal class

symmetry operations
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Direct lattice
Space groups
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space group symbol

crystal class

symmetry operations
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Direct lattice
Space groups
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multiplicity

Wyckoff letter

site symmetry

extinction rules
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Direct lattice
Space groups
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multiplicity

Wyckoff letter

site symmetry

extinction rules
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Direct lattice
Space groups
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Wyckoff letter

site symmetry

extinction rules

multiplicity
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Direct lattice
Space groups
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Wyckoff letter

site symmetry

extinction rules

multiplicity



Hercules Specialized Courses 18 | Navid Qureshi | ILL | Elastic neutron scattering

Reciprocal lattice
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The reciprocal lattice of a Bravais lattice consists of all vectors k for which 

Crystal lattice is periodic        periodic functions to describe it:  (r) = exp(ikr)

 (r) = exp(ikr) =  (r+R) = exp[ik(r+R)]

reciprocal lattice reflects the symmetry of the direct lattice 

Which k-vectors build up the reciprocal space?

Space of wave vectors

R is a direct lattice vector
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Reciprocal lattice
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f(x) =
P
n
�(x� nd) n 2 Z

Every periodic function                       
can be expressed by a Fourier series with

f(x) = f(x+ �)

k = m · 2⇡/�

f(x) =

1P
m=1

cos(m · 2⇡
d · x)

Calculate Fourier coefficients by Fourier transform:

FT [cos(k0x)] = �(k � k0) + �(k + k0)

with

F (k) =

R 1P
m=1

cos(m · 2⇡
d

· x) · e�ikx

=

P
m

�(k �m · 2⇡
d

)

Example: 1D Dirac comb
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Reciprocal lattice
Example: 1D Dirac comb
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Every periodic function                       
can be expressed by a Fourier series with

f(x) = f(x+ �)

k = m · 2⇡/�

reciprocal lattice of a Dirac comb is a Dirac comb with 2𝜋/d

f(x) =
P
n
�(x� nd) n 2 Z

Calculate Fourier coefficients by Fourier transform:

FT [cos(k0x)] = �(k � k0) + �(k + k0)

with

F (k) =

R 1P
m=1

cos(m · 2⇡
d

· x) · e�ikx

=

P
m

�(k �m · 2⇡
d

)
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Reciprocal lattice
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 (r) =  (r+R) ) eiGr
= eiG(r+R) ) eiGR

= 1 or GR = n · 2⇡

Set of k-vectors must correspond to reciprocal lattice vectors G, hence …

which is fulfilled for the reciprocal lattice vectors:

ai · a⇤j = 2⇡�ij

Each direct lattice has a reciprocal lattice.  
The reciprocal lattice of a reciprocal lattice is the direct lattice itself.  

Consider a direct lattice L with a 𝛿 function on each lattice point:

L(r) =
P

Rn2R
�3(r�Rn)

Bravais lattice in 3D

a⇤ = 2⇡
b⇥ c

a · (b⇥ c)
b⇤ = 2⇡

c⇥ a

a · (b⇥ c)
c⇤ = 2⇡

a⇥ b

a · (b⇥ c)
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Reciprocal lattice
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Construction of reciprocal lattice       from direct lattice 

The scalar product of any direct lattice 
vector Ri and reciprocal lattice vector Gj is 
an integer (times 2𝜋). 

aia⇤j

A reciprocal lattice vector is expressed by 
the Miller indices hkl.

G = ha⇤ + kb⇤ + lc⇤
1st Brillouin zone
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Reciprocal lattice
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Construction of reciprocal lattice   

The scalar product of any direct lattice 
vector R
an integer (times 2

ai a⇤j

A reciprocal lattice vector is expressed by 
the Miller indices hkl.

G = ha⇤ + kb⇤ + lc⇤

reciprocal integer intersections with main axes: 
a:  -1    b:   1/2   c:   ∞    ⟹   (-1 2 0)

Direct lattice

Every point in reciprocal space represents a set of direct lattice planes. 
               The reciprocal lattice vector is perpendicular to these planes.

1st
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Interaction neutron-sample
Nuclear scattering
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- mediated by strong force, short ranged (fm = 10-15 m) 

- neutron wavelength much larger (10-10 m)  
      cannot probe internal structure  
      scattering is isotropic 

- the interaction between the neutron and the atomic 
nucleus is represented by the Fermi pseudo-potential, a 
scalar field that is 0 except very close to the nucleus

advantage: neutron senses atomic position and not the electron cloud (bonds)

V (r) =
2⇡~2
mn

b�3(r)
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Scattering by a potential
Scattering cross section
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𝜎 has the unit of a surface 

usually in barns = 10-24 cm2

Number of neutrons n detected in solid angle ⌦

dn|{z}
ns�1

= �|{z}
ncm�2s�1

· d⌦|{z}
1

·�(✓,�)| {z }
cm2
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Scattering by a potential
Nuclear scattering
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The wave function at a spatial position r = sum of transmitted and scattered spherical wave 
function

Only             depends on the  
scattering potential        .

fk(✓,')

V (r)

vscatk (r) = eikr + fk(✓,')
eikr

r
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Scattering by a potential
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In the quantum mechanical treatment of scattering by a central potential,  
the stationary states 𝜑(r) verify: 

(�+ k2)'(r) = 2µ
~2 V (r)'(r)

In the integral equation of scattering, the stationary wave-function is written : 

where G+ is the outgoing Green’s function used to solve the differential equation by using:

(�+ k2)G(r) = �(r)

it can be shown that:

G±(r) = � 1

4⇡

e±ikr

r

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Nuclear scattering

(from Cohen-Tannoudji, 
 Quantum Mechanics, Volume 2 Chapter 8)
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Scattering by a potential
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In the quantum mechanical treatment of scattering by a central potential,  
the stationary states 𝜑(r) verify: 

In the integral equation of scattering, the stationary wave-function is written : 

G±(r) = � 1

4⇡

e±ikr

r asymptotic behaviour r ! 1
|r� r0| ⇡ r � ur0

(�+ k2)'(r) = 2µ
~2 V (r)'(r)

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Nuclear scattering

(from Cohen-Tannoudji, 
 Quantum Mechanics, Volume 2 Chapter 8)
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Scattering by a potential
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In the quantum mechanical treatment of scattering by a central potential,  
the stationary states 𝜑(r) verify: 

In the integral equation of scattering, the stationary wave-function is written : 

asymptotic behaviour r ! 1

fk(✓,') = � 1

4⇡

2µ

~2

Z
e�ikur0V (r0)vscatk (r0)d3r0

|r� r0| ⇡ r � ur0

vscatk (r) = eikr + fk(✓,')
eikr

r
⇡ eikr � 1

4⇡

eikr

r

2µ

~2

Z
e�ikur0V (r0)vscatk (r0)d3r0

(�+ k2)'(r) = 2µ
~2 V (r)'(r)

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Nuclear scattering

(from Cohen-Tannoudji, 
 Quantum Mechanics, Volume 2 Chapter 8)
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Scattering by a potential
Born expansion
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In the integral equation of scattering, the stationary wave-function is written : 

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Simple change of notation (          and            )  : 

vscatk (r0) = eikr
0
+

2µ

~2

Z
G+(r

0 � r00)V (r00)vscatk (r00)d3r00

r ! r0 r0 ! r00

Born expansion:

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)eikr

0
(r0)d3r0

+
2µ

~2

Z Z
G+(r� r0)V (r0)G+(r

0 � r00)V (r00)vscatk (r00)
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Conventions for this lecture

ki

kf

k

G

: initial wavevector

: final wavevector

: momentum transfer, scattering vector

: reciprocal lattice vector

Elastic scattering: |ki| = |kf | = k

Scattering by a potential
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Scattering by a potential
Born approximation
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Born expansion:

fk(✓,') = � 1

4⇡

2µ

~2

Z
e�ikur0V (r0)vscatk (r0)d3r0

vscatk (r) = eikir +
2µ

~2

Z
G+(r� r0)V (r0)eikir

0
(r0)d3r0

+
2µ

~2

Z Z
G+(r� r0)V (r0)G+(r

0 � r00)V (r00)vscatk (r00)

Inserting this into the scattered amplitude would give the Born expansion of the scattered 
amplitude. If the potential V(r) is weak, we can limit ourselves to the first order of V(r). 
This is the Born approximation. The scattered amplitude therefore becomes:

= � 1

4⇡

2µ

~2

Z
e�ikur0V (r0)eikir

0
d3r0

= � 1

4⇡

2µ

~2

Z
e�i(kf�ki)r

0
V (r0)d3r0 = � 1

4⇡

2µ

~2

Z
e�ikr0V (r0)d3r0

The scattering amplitude is related to the Fourier transform of the potential function.
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Scattering by a potential
Born approximation
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The scattering amplitude is related to the Fourier transform of the potential function.

With the Fermi pseudo potential for neutron scattering from a nucleus V (r) =
2⇡~2
mn

b�3(r)

|fk(✓,�)| = b

Neutron scattering from a nucleus is isotropic!

fk(✓,�) = � 1

4⇡

2µ

~2

Z
V (r)e�ikrd3r
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Scattering by a potential
Atomic form factor or scattering length
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The amplitude of the scattered wave (the Fourier transform of the potential function) 
is called the atomic form factor f (X-rays) or scattering length b (neutrons).

advantage with neutrons: scattered intensity does not drop with increasing scattering angle

Nucleus 
~10-15 m

Electron shell 
~10-10 m
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Scattering by a potential
Nuclear scattering
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Scattering lengths (analog to X-ray form factor)

advantages: 
                   

contrast between neighbouring elements 
light elements can be measured easily 
isotope effect (bH=-3.7, bD=6.8)

superposition of resonance scattering 
with slowly increasing potential 
scattering due to atomic weight
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Scattering by a potential
Nuclear scattering
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Scattering lengths (analog to X-ray form factor)

superposition of resonance scattering 
with slowly increasing potential 
scattering due to atomic weight

K+

Cl-
Example KCl:

scattering lengths of K and Cl are 
very different        strong contrast 

X-rays would see a primitive cell 
with half the lattice constant

advantages: 
                   

contrast between neighbouring elements 
light elements can be measured easily 
isotope effect (bH=-3.7, bD=6.8)
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Scattering by a potential
Magnetic scattering
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Magnetic scattering arises due to the interaction of the 
neutron spin with the magnetic field of an unpaired electron.

µ̂ = �µN �̂
gyromagnetic ratio

nuclear magneton µN =
meµB

mn

� = �1.91

The interaction is described by the potential:

neutron spin operator:

�µ̂ ·H = ��µN �̂ ·H

Magnetic scattering length proportional to electron radius e2/mec2:

r0 =
�e2

mec2
= �0.54 · 10�12 cm comparable to nuclear scattering

�̂Pauli spin operator
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d2�

d⌦dE
= r2

o

k
f

k
i

X

↵�

(�
↵�

� k̃
↵

k̃
�

)

| {z }
sum over directions xyz

X

��

0

p
�

h�|k̂2
↵

|�0ih�|k̂2
�

|�0i�(~! + E
�

� E
�

0)

| {z }
sum and average over final �

0
and initial states �

Scattering by a potential
Magnetic scattering

41

Magnetic field due to a single electron moving with velocity ve:

(from S. W. Lovesey, 
 Theory of Neutron Scattering from 

Condensed Matter, Volume 2)
H = curl

✓
µe ⇥R

|R|3

◆

| {z }
spin motion

+
(�e)

c

ve ⇥R

|R|3| {z }
orbital motion

The scattering cross section between the neutron and the electron becomes (after 2 pages):

In comparison to nuclear scattering the magnetic cross section has a directional dependence!
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Magnetic scattering
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Like for nuclear scattering the Born approximation holds and the scattered amplitude 
is the Fourier transformation of the potential function (atomic magnetisation density), 
the magnetic form factor.

which is defined by:

Scattering by a potential

g, gL, gS: gyromagnetic ratios 
jn: spherical Bessel functions

1
f(k) =

Z
⇢(r) exp(ikr)dr

f(k) =
gS
g
j0(k) +

gL
g
[j0(k) + j2(k)]
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Magnetic scattering
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Like for nuclear scattering the Born approximation holds and the scattered amplitude 
is the Fourier transformation of the potential function (atomic magnetisation density), 
the magnetic form factor.

which is defined by:

Scattering by a potential

analytical approximation: j0(s) = A exp(�as2) +B exp(�bs2) + C exp(�cs2) +D

coefficients a, A, b, B, c, C, D tabulated on http://www.ill.eu/sites/ccsl/html/ccsldoc.html)

j2(s) = (A exp(�as2) +B exp(�bs2) + C exp(�cs2) +D)s2
s =

sin ✓

�

1
f(k) =

Z
⇢(r) exp(ikr)dr

f(k) =
gS
g
j0(k) +

gL
g
[j0(k) + j2(k)]
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Diffraction condition

44

lattice planes with Miller indices hkl 
(hkl) intercepts real cell axes at a/h b/k c/l 

d is the distance between the planes

Diffraction can be considered as the  
coherent superposition of scattered waves  

from this set of planes

Bragg’s law

Imagine a crystal with only one atom per unit-cell. For which k is the intensity non-zero? 
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Diffraction condition
Bragg’s law
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lattice planes with Miller indices hkl 
(hkl) intercepts real cell axes at a/h b/k c/l 

d is the distance between the planes

Path length difference: 
Constructive interference: 
Bragg law:

2d sin ✓
n · �

n� = 2d sin ✓

Imagine a crystal with only one atom per unit-cell. For which k is the intensity non-zero? 
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Diffraction condition
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The path difference is:

Constructive interference for:

With definition of reciprocal lattice                       :

Momentum transfer equal to a lattice vector      Crystal can only provide discrete momentum kicks 

Laue condition (equivalent to Bragg’s law)

Scattering of plane wave exp(ikr) from two lattice points at 0 and R

�s(R) = R · kf

kf
�R · ki

ki

�s = n · � = n · 2⇡
k

G ·R = n · 2⇡

(k = ki = kf )

R R

R

�s · k = R · (kf � ki) = R · k = n · 2⇡ = GR ) k = G
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Scattering from a unit cell
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imagine two scattering potentials (atoms), the first at 0, the second at r

�s(r) = r · kf

kf
� r · ki

ki

The path difference is:

Therefore, the phase difference is:

'(r) = 2⇡�s
� = k�s = (kf � ki) · r = G · r

Sum up phase differences over atoms in unit cell:

Structure factor F(hkl) is the Fourier transform of the unit cell scattering potential.

Structure factor (nuclear scattering)

F (hkl) =

P
j
bj exp(iGrj) =

P
j
bj exp[2⇡i(hxj + kyj + lzj)]
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Scattering from a unit cell

48

Structure factor (magnetic scattering)

The magnetic structure factor is obtained in the same way, but it is also proportional to the 
magnetic moment of the involved atoms       directional dependence, FM is a vector

Only the component of FM which is perpendicular to k contributes to magnetic scattering:

FM (hkl) =

X

j

µjf(k) exp(ikrj) =
X

j

µjf(k) exp[2⇡i(hxj + kyj + lzj)]

Equivalent: Projection of FM onto (hkl) plane

k
FM

QM(hkl)

QM = k̂⇥ (FM ⇥ k̂)
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Scattering from a unit cell
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Example: ferromagnetic structure

FM (hkl) =

X

j

µjf(k) exp(ikrj) =
X

j

µjf(k) exp[2⇡i(hxj + kyj + lzj)]

QM (001) = FM (001)

QM (100) = FM (100) QM (010) = 0

QM (110) = FM (110) sin↵

FM (001) =

0

@
0
µ
0

1

A f(k)

FM (100) =

0

@
0
µ
0

1

A f(k) FM (010) =

0

@
0
µ
0

1

A f(k)

FM (110) =

0

@
0
µ
0

1

A f(k)
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… relates inverse Q points and stems from the 
property of Fourier transforms of real functions:

if bj is real then:

since the scattered intensity is proportional to FF*

scattered intensities of Friedel pairs are equal if bj are real 
reciprocal space has inversion symmetry even if the real space has not 

F (k) =
X

j

bj exp(ikrj)

F (�k) =
X

j

bj exp(�ikrj) = F ⇤
(k)

I(k) = F (k)F ⇤(k) = F ⇤(�k)F (�k) = I(�k)
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- Friedel law holds almost all of the time  
(especially in neutron scattering unless very high incident energies are used) 

- Symmetries in real space are also valid in reciprocal space (without the translation) 
- Combining the two above       11 Laue groups 

Crystal system Laue class

triclinic -1

monoclinic 2/m

orthorhombic mmm

tetragonal 4/m; 4/mmm

trigonal -3; -3/m

hexagonal 6/m; 6/mmm

cubic m3; m3m

crystal system can only be determined by the 
Laue symmetry (symmetry of intensities) 

Example: lattice parameters nearly orthorhombic

c = 18.123 Åa = 10.097 Å b = 13.978 Å
↵ = 90.00� � = 90.10� � = 90.00�

2/m: (h k l) = (-h -k -l) = (h -k l) = (-h k -l)

mmm: (h k l) = (-h -k -l) = (h -k l) = (-h k -l) 
       = (-h k l) = (h -k -l) = (-h -k l) = (h k -l)
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- Friedel law holds almost all of the time  
(especially in neutron scattering unless very high incident energies are used) 

- Symmetries in real space are also valid in reciprocal space (without the translation) 
- Combining the two above       11 Laue groups 

crystal system can only be determined by the 
Laue symmetry (symmetry of intensities) 

Example: lattice parameters nearly orthorhombic

c = 18.123 Åa = 10.097 Å b = 13.978 Å
↵ = 90.00� � = 90.10� � = 90.00�

2/m: (h k l) = (-h -k -l) = (h -k l) = (-h k -l)

mmm: (h k l) = (-h -k -l) = (h -k l) = (-h k -l) 
       = (-h k l) = (h -k -l) = (-h -k l) = (h k -l)

systematic absences
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Systematic absences

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering 
- screw axes 
- glide planes

Direct consequence of exact cancellation of structure factors. Example C-centering:

F (hkl) = b[e2⇡i(hx+ky+lz) + e2⇡i[h(x+1/2)+k(y+1/2)+lz])

= be2⇡i(hx+ky+lz) · (1 + e⇡i(h+k))

=

⇢
2b , if h+ k = 2n
0 , if h+ k = 2n+ 1
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Systematic absences

Direct consequence of exact cancellation of structure factors. Example screw axis:

F (hkl) = b[e2⇡i(hx+ky+lz) + e2⇡i[�hx�ky+l(z+1/2)]]

(for h=k=0)

) only (00l) reflections with l = even

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering 
- screw axes 
- glide planes

= be2⇡ilz · (1 + e⇡il)
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The phase problem

F (hkl) =

P
j
bj exp(iGrj) =

P
j
bj exp[2⇡i(hxj + kyj + lzj)]

Now we know how to calculate the structure factor:

BUT… a diffraction experiment yields the intensity of the scattered wave:

I ⇠ F 2

Important information is lost as only the amplitude can be recovered.  
This is known as the phase problem in crystallography. 

Consequence: The scattering potential cannot be determined without a model.

How to describe a magnetic structure?
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Ordered magnetic state

In some crystals, some of the atoms/ions have 
unpaired electrons (transition metals, rare-
earths). 

Hunds’ rule favors a state with maximum S and J. 
The ions possess a localised magnetic moment. 

Exchange interactions (direct, superexchange, 
double exchange, RKKY, dipolar, …) often stabilize 
a long-range magnetic order
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Propagation vector

The magnetic structure does not necessarily have the same periodicity and 
symmetry as the underlying crystal structure. The relation between one and 
another is expressed by the propagation or wave vector.
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Propagation vector

The magnetic structure does not necessarily have the same periodicity and 
symmetry as the underlying crystal structure. The relation between one and 
another is expressed by the propagation or wave vector.

magnetic periodicity = nuclear periodicity ! q = 0

ferromagnetic
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Propagation vector

The magnetic structure does not necessarily have the same periodicity and 
symmetry as the underlying crystal structure. The relation between one and 
another is expressed by the propagation or wave vector.

antiferromagnetic

magnetic periodicity = 2 x nuclear periodicity ! q = (1/2 0 0)
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Propagation vector

The magnetic structure does not necessarily have the same periodicity and 
symmetry as the underlying crystal structure. The relation between one and 
another is expressed by the propagation or wave vector.

commensurate antiferromagnetic

magnetic periodicity = 2 x nuclear periodicity ! q = (1/2 0 0)



Hercules Specialized Courses 18 | Navid Qureshi | ILL | Elastic neutron scattering

Magnetic structures

61

Propagation vector

The magnetic structure does not necessarily have the same periodicity and 
symmetry as the underlying crystal structure. The relation between one and 
another is expressed by the propagation or wave vector.

incommensurate antiferromagnetic

magnetic periodicity = x times nuclear periodicity ! q = (1/x 0 0)
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Propagation vector

Magnetic Bragg reflections can be found at k = G+ q

commensurate AF
! q = (1/2 0 0)

incommensurate AF
q = (1/2� � 0 0)

ferromagnetic

q = 0superposition for Magnetic satellites for q 6= 0
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Fourier expansion of magnetic moments

One usually describes magnetic structures with Fourier components of the magnetic moments:

which for a single propagation vector becomes:

Since        is a real vector, one must impose the condition  µ(r)

is a complex vector made of linear combinations of basis vectors according to one or 
more irreducible representations.

µ(r) =
X

q

Sq · e�iqr

µ(r) = Sq · e�iqr + S�q · eiqr

Sq

S⇤
�q = Sq
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Types of magnetic order

real Fourier components

q=0 ferromagnetic q=(100) antiferromagnetic (centered cells)

µ(rj) = Sq · e�iqr = Sq µ(r) =
X

q

Sq · e�iqr = Sq · (�1)n
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Types of magnetic order

real Fourier components

antiferromagnetic, q=1/2G (at the border of the 1st Brillouin zone)

µ(r) =
X

q

Sq · e�iqr = Sq · (�1)n
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Types of magnetic order

imaginary Fourier components (real and imaginary parts parallel)

amplitude-modulated antiferromagnetic, q<1/2G (at the interior of the 1st Brillouin zone)

Sq =
1

2
µûe�2⇡i�q µ(r) = µû cos[2⇡(qr+ �q)]
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Types of magnetic order

imaginary Fourier components (real and imaginary parts perpendicular)

antiferromagnetic spirals, k<1/2G (at the interior of the 1st Brillouin zone)

helicoidal cycloidal

Sq =
1

2
(µuû+ iµvv̂)e

�2⇡i�q µ(r) = µuû cos[2⇡(qr+ �q)] + µvv̂ sin[2⇡(qr+ �q)]
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Types of magnetic order

multi-q structures, e.g. conical (ferromagnetic k=0 component + helix)

treatment of every component separately 
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Representation analysis

identify the symmetry operators of the space group which are 
compatible with the magnetic translation symmetry       little group

symmetry operations with or without time inversion yield different 
irreducible representations       magnetic models 

transform a spin with Fourier components (uvw) according to the 
magnetic symmetry operations        spin configuration 

test the different irreducible representations on the data and refine 
the free parameters 

R · q = q+G
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Example: Co3V2O8

2 magnetic sites S1 (a, b), S2 (a, b, c, d), q=0



Hercules Specialized Courses 18 | Navid Qureshi | ILL | Elastic neutron scattering

Magnetic structures

71

Example: Co3V2O8

2 magnetic sites S1 (a, b), S2 (a, b, c, d), q=(0,𝛿,0)
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Example: (Co0.1Ni0.3)3V2O8   q=(𝛿,0,0)

2 K 
Γ1 + Γ4 

7 K 
Γ1 
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D20 (high flux)

sample in a vanadium container 
V scatters only incoherently
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Result: Diffraction pattern
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Useful information lies in the 

- position  
- the intensity 
- the shape and width 

of the reflections.

Powder diffraction
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n� = 2d sin ✓
d =

✓
h2

a2 sin2 �
+

k2

b2
+

l2

c2 sin2 �
� 2hl cos�

ac sin2 �

◆� 1
2

d =

✓
h2

a2
+

k2

b2
+

l2

c2

◆� 1
2

1. Position

Bragg’s law

monoclinic

orthorhombic

cubic

with 𝜃 and 𝜆 known → able to obtain lattice parameters

Powder diffraction

d = a(h2 + k2 + l2)�
1
2
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2. Intensity I ⇠ F 2

nuclear structure factor 
(interaction between neutron and core potential of nuclei)

magnetic structure factor 
(interaction between neutron and electron’s magnetic field)

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

sinθ/λ

f

magnetic form factor

Powder diffraction

FN (k) =
P
j
bj exp(ikrj) exp(�Bj

sin2 ✓
�2 )

f(k) =

1Z

�1

⇢mag(r) exp(ikr)dr

FM (k) =
X

j

µjfj(k) exp(ikrj) exp

✓
�Bj

sin

2 ✓

�2

◆
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3. Peak width and shape

Powder diffraction

2θM 2θM 2θM

source, monochromator, slits, collimators,  
sample strain, stress, etc. have an influence on the  
peak shape and the peak width

Caglioti formula

FWHM2 = u tan2 ✓ + v tan ✓ + w

resolution function minimum at the take-off angle 2𝜃M 

(focussing effect)
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Powder diffraction - Corrections

0 → 2𝜃

Lorentz factor 
Asymmetry

Plane multiplicity

example:

F(200) = F(220) = F(222)

4I(200) = 2I(220) = I(222)

(200)

(2̄00)

(220)

(2̄20)
(22̄0)
(2̄2̄0) (2̄2̄2)

(22̄2)
(2̄22)

(222)(222̄)
(2̄22̄)

(2̄2̄2̄)
(22̄2̄)

Preferred orientation

needles, platelets, etc.  
tend to have a preferred 

orientation

no statistical orientation 
of crystallites

some (hkl) families 
like e.g. (hk0), (00l), 

etc. might be favoured

Absorption

sample absorption 
is angle dependent



Hercules Specialized Courses 18 | Navid Qureshi | ILL | Elastic neutron scattering

Diffraction techniques
Single crystal diffraction 

81

・single crystal experiments take 3-10 days 

・only if neutron powder and X-ray single crystal experiments fail 

・lattice parameters and rough orientation need to be known (not for Laue) 

・different techniques: normal beam, 4 circle, Laue, … 
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Single crystal diffraction - 4 circle mode

by adjusting 2𝜃, 𝜔, 𝜒 and 𝜙  
the sample is put in reflection 

position 

D10 (ILL)
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cryomagnets, pressure cells, … 
 cannot be tilted much 

→ confined to the scattering plane 
e.g. only (hk0) reflections 

→ lifting counter 
able to reach l=1, 2…
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- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 

single crystal glued on  
an aluminium sample holder
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Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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phase diagram of CuO 
Villareal et al., PRL 109 167206 (2012)

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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move crystal through reflection  
position by scanning 𝜔  

(or 𝜔-x𝜃)
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Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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sophisticated fitting routines  
e.g. COLL5, RACER
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Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 

(120) (12̄0)

(1̄2̄0)(1̄20)

(120)
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Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 

Extinction

Absorption

Multiple scattering
(h2 � h1 k2 � k1 l2 � l1)

Lorentz factor
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- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
magnetic structure of (Co0.1Ni0.9)3V2O8
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polychromatic beam → every accessible hkl plane is in reflection position  
     for a particular wavelength
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- quickly orient single crystals 

- observe phase transitions 

- magnetic satellites 

- find propagation vectors

Single crystal diffraction - Laue method



Hercules Specialized Courses 18 | Navid Qureshi | ILL | Elastic neutron scattering

Summary

98

Diffraction yields structural information: lattice constants, atomic positions, atomic 
displacement factors, occupations, space group 
symmetry, stress and strain

Advantages of neutrons with respect to X-rays: sensitive to the nuclei position, contrast of 
scattering lengths, isotope effect, isotropic 
scattering

The structure factor is the Fourier transform of the unit cell scattering potential functions.

The scattering length is the Fourier transform of the atomic scattering potential function.

We measure I ⇠ F 2 phase information is lost models necessary

Nuclear scattering
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Only the component of the magnetic moment perpendicular to the scattering vector is 
effective in magnetic scattering.

Representation analysis is a powerful tool to derive symmetry-adapted spin configurations. 
Important reduction of refinable parameters!

The structure factor is the Fourier transform of the unit cell scattering potential functions.

The magnetic form factor is the Fourier transform of the atomic scattering potential function.

We measure I ⇠ F 2 phase information is lost models necessary

Magnetic scattering


