Elastic neutron scattering Navid Qureshi (ILL, Grenoble)

Hercules Specialized Courses 18

Scope of the lecture

- Diffraction techniques (X-rays, neutrons) are used to investigate crystalline solids, engineering materials, liquids, thin films, ...
- Whatever the technique used (conventional powder or single crystal diffraction, small angle scattering, reflectometry, ...) all of these refer to the coherent elastic scattering of a X-ray or neutron beam
- This lecture will focus on crystallography, i.e. the study of crystalline solids, which are described by infinite translational symmetry
- The scattered X-ray or neutron beams contain information which allow to reveal the 3-dimensional arrangement of atoms and magnetic moments

Outline

- Crystallography

Direct lattice, symmetry operations, reciprocal lattice, Miller indices, ...

- Interaction neutron-sample

scattering by a potential, scattering length, form factor, ...

- Diffraction condition

Bragg's law, Laue condition, structure factor

- Symmetry in reciprocal space

Friedel law, Laue classes, systematic absences

- Magnetic structures

types of magnetic order, magnetic symmetry, symmetry analysis, irreducible representations

- Diffraction techniques

powder diffraction, single crystal diffraction, Laue diffraction, ...

Motivation

When waves (water, light, neutrons, electrons, ...) pass through two slits whose distance is in the order of the wavelength, the scattered waves will interfere.
The interference scheme gives information about the distance and size of the slits.

Direct lattice

An ideal crystal is an infinite sequence of identical structure units in 3D space.
\longrightarrow periodic structure
crystal $=$ lattice + basis

infinite lattice of equivalent points

NaCl structure:

$$
\begin{array}{cc}
& \text { OK } \\
\text { lattice vectors } & \text { not OK } \\
\text { centered cell }
\end{array}
$$

Direct lattice

An ideal crystal is an infinite sequence of identical structure units in 3D space.
\longrightarrow periodic structure
crystal $=$ lattice + basis
infinite lattice of equivalent points

NaCl structure:

structure unit on each point

$$
\begin{array}{cc}
& \text { OK } \\
\text { lattice vectors } & \text { not OK } \\
\text { centered cell }
\end{array}
$$

lattice vectors | not OK |
| :---: |
| centered cell |

Direct lattice

Crystal systems

Crystal system	Laue class
triclinic	$a \neq b \neq c, \boldsymbol{\alpha} \neq \boldsymbol{\beta} \neq \boldsymbol{\gamma}$
monoclinic	$a \neq b \neq c, \boldsymbol{\alpha}=\boldsymbol{\gamma}=90^{\circ}, \boldsymbol{\beta} \neq 90^{\circ}$
orthorhombic	$a \neq b \neq c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$
tetragonal	$a=b \neq c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$
trigonal	$a=b=c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma} \neq 90^{\circ}$
hexagonal	$a=b \neq c, \boldsymbol{\alpha}=\boldsymbol{\beta}=90^{\circ}, \gamma=120^{\circ}$
cubic	$a=b=c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$

Direct lattice

Centering translations $\rightarrow 14$ Bravais lattices

triclinic

monoclinic

orthorhombic

tetragonal

hexagonal

Centering type	Symbol	Translations
primitive	P	
one-face centered	A	$x, y+1 / 2, z+1 / 2$ $x+1 / 2, y, z+1 / 2$ $x+1 / 2, y+1 / 2, z$
B C	I	$x+1 / 2, y+1 / 2, z+1 / 2$
body centered	Face centered	F
$x, y+1 / 2, z+1 / 2$ $x+1 / 2, y, z+1 / 2$ $x+1 / 2, y+1 / 2, z$		

Direct lattice

Symmetry operations

Rotations (order $n: 2 \pi / n$)

Roto-inversion (\bar{n})

Mirror planes (m)

Screw axes (rot + trans)

Inversion ($\overline{1}$)

Glide planes (mirror + trans)

Direct lattice

Magnetic symmetry

Magnetic symmetry operations = "usual" crystallographic symmetries + time inversion
A magnetic moment transforms like an axial or pseudo vector

2: $\mu_{\alpha} \| 2$ conserved, $\mu_{\alpha} \perp 2$ inverted
2': $\mu_{\alpha} \| 2^{\prime}$ inverted, $\mu_{\alpha} \perp 2^{\prime}$ conserved

$\mathrm{m}: \mu_{\alpha} \| m$ inverted, $\mu_{\alpha} \perp m$ conserved $\mathrm{m}^{\prime}: \mu_{\alpha} \| m$ conserved, $\mu_{\alpha} \perp m^{\prime}$ inverted

Magnetic structures

Magnetic symmetry

Magnetic moments on special Wyckoff positions have less degrees of freedom.

Not using the magnetic symmetry is like treating the crystal structure in P1!

Direct lattice

Symmetry operations

Mathematical description (polar vectors):

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)
$$

Seitz notation: ($\mathrm{R} \mid \mathrm{t}$)

Symmetry contained in the coordination triplet:

e.g. 21 screw axis along c: $-x,-y, z+1 / 2$

Direct lattice

Space groups

http://it.iucr.org/

Combining the 14 Bravais lattices with all symmetry operations leads to 230 space groups.

Including the magnetic symmetry leads to 1651 Shubnikov groups.

International Tables for Crystallography

ISBN: 978-1-4020-4969-9 doi: 10.1107/97809553602060000001
This is the home page for International Tables, the definitive resource and reference work for crystallography. The series consists of the following volumes:

Guided tour

Volume A Space-group symmetry
2006 Edition | Contents | Sample pages | Indexes |
Volume A1 Symmetry relations between space groups 2011 Edition | Contents | Sample pages | Indexes | 2006 Edition | Contents | Sample pages | Indexes |
Volume B Reciprocal space
2010 Edition | Contents | Sample pages | Indexes | 2006 Edition | Contents | Sample pages | Indexes |
Volume C Mathematical, physical and chemical tables 2006 Edition | Contents | Sample pages | Indexes |
Volume D Physical properties of crystals
2013 Edition | Contents | Sample pages | Indexes | 2006 Edition | Contents | Sample pages | Indexes |
Subperiodic groups
2010 Edition | Contents | Sample pages | Indexes | 2006 Edition | Contents | Sample pages | Indexes | Crystallography of biological macromolecules 2012 Edition | Contents | Sample pages | Indexes 2006 Edition | Contents | Sample pages | Indexes |
Volume G Definition and exchange of crystallographic data 2006 Edition | Contents | Sample pages | Indexes | Symmetry database

Direct flattice

Space groups

space group symbol

crystal class
symmetry operations

Origin at -1 on 2_{1}
$0 \leq x \leq 1 ; 0 \leq y \leq 1 / 4 ; 0 \leq z \leq$

NEUTRONS

Direct lattice

Space groups
space group symbol

$P 2_{1} / m$

No. 11
UNIQUE AXIS \boldsymbol{b}

Monoclinic 4
Patterson symmetry P12/m1

$P 121_{1} / m 1$

Origin at -1 on 2_{1}

crystal class

symmetry operations
space group symbol
$0 \leq x \leq 1 ; 0 \leq y \leq 1 / 4 ; 0 \leq z \leq$

Direct /attice

Space groups
space group symbol

$P 2_{1} / m$

No. 11
UNIQUE AXIS \boldsymbol{b}

symmetry operations

space group symbol
crystal class

Origin at -1 on 2_{1}
Asymmetric unit
Symmetry operations

Direct lattice

Space groups

multiplicity

Wyckoff letter
site symmetry
extinction rules

Positions					
Multiplicity, Wyckoff letter, Site symmetry Coordinates					
					General:
(4.) 1	(1) x, y, z	(2) $-x, y+1 / 2,-z$	(3) $-x,-y,-z$	(4) $x,-y+1 / 2, z$	$0 k 0: k=2 n$
					Special: as above, plus
$2 e m$	$x, 1 / 4, z$		-x, 3/4, -z		no extra conditions
$\begin{array}{lll}2 & d & -1\end{array}$	1/2, $0,1 / 2$		1/2, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & c & -1\end{array}$	0, 0, 1/2		0, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & b & -1\end{array}$	1/2,0,0		1/2, 1/2, 0		$h k l: k=2 n$
$\begin{array}{llll}2 & a & -1\end{array}$	0,0,0		0, 1/2, 0		$h k l: k=2 n$

Direct lattice

Space groups

multiplicity

Wyckoff letter
site symmetry
extinction rules

Positions					
Multiplicity, Wyckoff letter, Site symmetry		Coordinates			Reflection conditions
					General:
f	(1) x, y, z	(2) $-x, y+1 / 2,-z$	(3) $-x,-y,-z$	(4) $x,-y+1 / 2, z$	$0 \mathrm{k} 0: k=2 n$
					Special: as above, plus
$2 e m$	$x, 1 / 4, z$		-x, 3/4, -z		no extra conditions
$\begin{array}{lll}2 & d & -1\end{array}$	1/2,0, $1 / 2$		1/2, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & c & -1\end{array}$	0, $0,1 / 2$		0, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & b & -1\end{array}$	1/2,0,0		1/2, 1/2, 0		$h k l: k=2 n$
$\begin{array}{llll}2 & a & -1\end{array}$	0,0,0		0,1/2, 0		$h k l: k=2 n$

Direct lattice

Space groups

multiplicity

Wyckoff Ietter
site symmetry
extinction rules

Positions					
Multiplicity, Wyckoff letter, Site symmetry\quad Coordinates \quad Reflection conditions					
411					General:
	(1) x, y, z	(2) $-x, y+1 / 2,-z$	(3) $-x,-y,-z$	(4) $x,-y+1 / 2, z$	$0 k 0: k=2 n$
					Special: as above, plus
$2 e m$	$x, 1 / 4, z$		-x, 3/4, -z		no extra conditions
$\begin{array}{lll}2 & d & -1\end{array}$	1/2, 0, 1/2		1/2, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & c & -1\end{array}$	0, $0,1 / 2$		0, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & b & -1\end{array}$	1/2,0,0		1/2, 1/2, 0		$h k l: k=2 n$
$\begin{array}{llll}2 & a & -1\end{array}$	0,0,0		0,1/2,0		$h k l: k=2 n$

Direct lattice

Space groups

multiplicity

Wyckoff Ietter
site symmetry
extinction rules

Positions					
Multiplicity, Wyckoff letter, Site symmetry Coordinates					
					General:
$4 f 1$	(1) x, y, z	(2) $-x, y+1 / 2,-z$	(3) $-x,-y,-z$	(4) $x,-y+1 / 2, z$	$0 k 0: k=2 n$
					Special: as above, plus
$2 e m$	$x, 1 / 4, z$		$-x, 3 / 4,-z$		no extra conditions
$2 \begin{array}{lll} \\ & d & -1\end{array}$	1/2, 0, 1/2		1/2, 1/2, 1/2		$h k l: k=2 n$
$2 c^{2}$	0,0,1/2		0, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & b & -1\end{array}$	1/2,0,0		1/2, 1/2, 0		$h k l: k=2 n$
$\begin{array}{llll}2 & a & -1\end{array}$	$0,0,0$		$0,1 / 2,0$		$h k l: k=2 n$

Reciprocal lattice

Space of wave vectors

Crystal lattice is periodic \longrightarrow periodic functions to describe it: $\Psi(\mathbf{r})=\exp (i \mathbf{k r})$

The reciprocal lattice of a Bravais lattice consists of all vectors \mathbf{k} for which

$$
\begin{gathered}
\Psi(\mathbf{r})=\exp (i \mathbf{k r})=\Psi(\mathbf{r}+\mathbf{R})=\exp [i \mathbf{k}(\mathbf{r}+\mathbf{R})] \\
\mathbf{R} \text { is a direct lattice vector }
\end{gathered}
$$

\rightarrow reciprocal lattice reflects the symmetry of the direct lattice

Which k-vectors build up the reciprocal space?

Reciprocal lattice

Example: 1D Dirac comb

Every periodic function $f(x)=f(x+\lambda)$ can be expressed by a Fourier series with

$$
k=m \cdot 2 \pi / \lambda
$$

Calculate Fourier coefficients by Fourier transform:

$$
\begin{gathered}
F(k)=\int \sum_{m=1}^{\infty} \cos \left(m \cdot \frac{2 \pi}{d} \cdot x\right) \cdot e^{-i k x}=\sum_{m} \delta\left(k-m \cdot \frac{2 \pi}{d}\right) \\
\text { with } \\
F T\left[\cos \left(k_{0} x\right)\right]=\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)
\end{gathered}
$$

Reciprocal lattice

Example: 1D Dirac comb

Every periodic function $f(x)=f(x+\lambda)$ can be expressed by a Fourier series with

$$
k=m \cdot 2 \pi / \lambda
$$

Calculate Fourier coefficients by Fourier transform:
$F(k)=\int \sum_{m=1}^{\infty} \cos \left(m \cdot \frac{2 \pi}{d} \cdot x\right) \cdot e^{-i k x}=\sum_{m} \delta\left(k-m \cdot \frac{2 \pi}{d}\right)$
$\xrightarrow{2 \pi / d}$
with

$$
F T\left[\cos \left(k_{0} x\right)\right]=\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)
$$

\rightarrow reciprocal lattice of a Dirac comb is a Dirac comb with $2 \pi / d$

Reciprocal lattice

Bravais lattice in 3D

Consider a direct lattice L with a δ function on each lattice point:

$$
L(\mathbf{r})=\sum_{\mathbf{R}_{n} \in \mathbf{R}} \delta^{3}\left(\mathbf{r}-\mathbf{R}_{n}\right)
$$

Set of k-vectors must correspond to reciprocal lattice vectors \mathbf{G}, hence ...

$$
\Psi(\mathbf{r})=\Psi(\mathbf{r}+\mathbf{R}) \Rightarrow e^{i \mathbf{G r}}=e^{i \mathbf{G}(\mathbf{r}+\mathbf{R})} \Rightarrow e^{i \mathbf{G} \mathbf{R}}=1 \text { or } \mathbf{G} \mathbf{R}=n \cdot 2 \pi
$$

which is fulfilled for the reciprocal lattice vectors:

$$
\begin{gathered}
\mathbf{a}^{*}=2 \pi \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} \quad \mathbf{b}^{*}=2 \pi \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} \quad \mathbf{c}^{*}=2 \pi \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} \\
\mathbf{a}_{i} \cdot \mathbf{a}_{j}^{*}=2 \pi \delta_{i j}
\end{gathered}
$$

Each direct lattice has a reciprocal lattice.
The reciprocal lattice of a reciprocal lattice is the direct lattice itself.

Reciprocal lattice

Construction of reciprocal lattice \mathbf{a}_{j}^{*} from direct lattice \mathbf{a}_{i}

The scalar product of any direct lattice vector R_{i} and reciprocal lattice vector G_{j} is an integer (times 2π).

A reciprocal lattice vector is expressed by the Miller indices hkl.

$$
\mathbf{G}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

Reciprocal lattice

Construction of reciprocal lattice \mathbf{a}_{i}

The scalar product of any direct lattice vector R
 an integer (times 2

A reciprocal lattice vector is expressed by the Miller indices hkl.

$$
\mathbf{G}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

reciprocal integer intersections with main axes:

$$
a:-1 \quad b: 1 / 2 \quad c: \infty \quad \Rightarrow \quad\left(\begin{array}{lll}
-1 & 2 & 0
\end{array}\right)
$$

Every point in reciprocal space represents a set of direct lattice planes. The reciprocal lattice vector is perpendicular to these planes.

Interaction neutron-samplè

Nuclear scattering

- mediated by strong force, short ranged ($\mathrm{fm}=10^{-15} \mathrm{~m}$)
- neutron wavelength much larger ($10^{-10} \mathrm{~m}$)
\longrightarrow cannot probe internal structure
\longrightarrow scattering is isotropic
- the interaction between the neutron and the atomic
 nucleus is represented by the Fermi pseudo-potential, a scalar field that is 0 except very close to the nucleus

$$
V(\mathbf{r})=\frac{2 \pi \hbar^{2}}{m_{n}} b \delta^{3}(\mathbf{r})
$$

advantage: neutron senses atomic position and not the electron cloud (bonds)

Scattering by a potential

Scattering cross section

Number of neutrons n detected in solid angle Ω

$$
\underbrace{d n}_{\mathrm{n} s^{-1}}=\underbrace{\Phi}_{\mathrm{ncm} m^{-2} \mathrm{~s}^{-1}} \cdot \underbrace{d \Omega}_{1} \cdot \underbrace{\sigma(\theta, \phi)}_{\mathrm{cm}^{2}}
$$

σ has the unit of a surface
usually in barns $=10^{-24} \mathrm{~cm}^{2}$

Scattering by a potential

Nuclear scattering

The wave function at a spatial position $r=$ sum of transmitted and scattered spherical wave function

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+f_{k}(\theta, \varphi) \frac{e^{i k r}}{r}
$$

Only $f_{k}(\theta, \varphi)$ depends on the scattering potential $V(\mathbf{r})$.

Scattering by a potential

Nuclear scattering

In the quantum mechanical treatment of scattering by a central potential, the stationary states $\varphi(\mathbf{r})$ verify:

$$
\left(\Delta+k^{2}\right) \varphi(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}) \varphi(\mathbf{r})
$$

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

where G_{+}is the outgoing Green's function used to solve the differential equation by using:

$$
\left(\Delta+k^{2}\right) G(\mathbf{r})=\delta(\mathbf{r})
$$

it can be shown that:

$$
G_{ \pm}(\mathbf{r})=-\frac{1}{4 \pi} \frac{e^{ \pm i \mathbf{k r}}}{r}
$$

Scattering by a potential

Nuclear scattering

In the quantum mechanical treatment of scattering by a central potential, the stationary states $\varphi(\mathbf{r})$ verify:

$$
\left(\Delta+k^{2}\right) \varphi(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}) \varphi(\mathbf{r})
$$

(from Cohen-Tannoudji,
Quantum Mechanics, Volume 2 Chapter 8)

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

asymptotic behaviour $r \rightarrow \infty$

$$
\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \approx r-\mathbf{u r}^{\prime}
$$

Scattering by a potential

Nuclear scattering

In the quantum mechanical treatment of scattering by a central potential, the stationary states $\varphi(\mathbf{r})$ verify:

$$
\left(\Delta+k^{2}\right) \varphi(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}) \varphi(\mathbf{r})
$$

(from Cohen-Tannoudji,
Quantum Mechanics, Volume 2 Chapter 8)

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

$v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+f_{k}(\theta, \varphi) \frac{e^{i k r}}{r} \approx e^{i \mathbf{k r}}-\frac{1}{4 \pi} \frac{e^{i k r}}{r} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}$

$$
f_{k}(\theta, \varphi)=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

asymptotic behaviour $r \rightarrow \infty$

$$
\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \approx r-\mathbf{u r}^{\prime}
$$

Scattering by a potential

Born expansion

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

Simple change of notation ($r \rightarrow r^{\prime}$ and $r^{\prime} \rightarrow r^{\prime \prime}$) :

$$
v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right)=e^{i \mathbf{k} \mathbf{r}^{\prime}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime \prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime \prime}\right) d^{3} r^{\prime \prime}
$$

Born expansion:

$$
\begin{aligned}
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}} & +\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{k \mathbf { r } ^ { \prime }}}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \\
& +\frac{2 \mu}{\hbar^{2}} \iint G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) G_{+}\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime \prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime \prime}\right)
\end{aligned}
$$

Scattering by a potential

Conventions for this lecture

\mathbf{k}_{i} : initial wavevector
\mathbf{k}_{f} : final wavevector
\mathbf{k} : momentum transfer, scattering vector
G : reciprocal lattice vector

Elastic scattering: $\quad\left|\mathbf{k}_{i}\right|=\left|\mathbf{k}_{f}\right|=k$

Scattering by a potential

Born approximation

Born expansion:

$$
\begin{aligned}
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k}_{i} \mathbf{r}} & +\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{k}_{i} \mathbf{r}^{\prime}}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \\
& +\frac{2 \mu}{\hbar^{2}} \iint G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) G_{+}\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime \prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime \prime}\right)
\end{aligned}
$$

Inserting this into the scattered amplitude would give the Born expansion of the scattered amplitude. If the potential $\mathrm{V}(\mathbf{r})$ is weak, we can limit ourselves to the first order of $\mathrm{V}(\mathbf{r})$. This is the Born approximation. The scattered amplitude therefore becomes:

$$
\begin{aligned}
f_{k}(\theta, \varphi) & =-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r}} V\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{k}_{i} \mathbf{r}^{\prime}} d^{3} r^{\prime} \\
& =-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i \mathbf{k r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
\end{aligned}
$$ This is the Born approximation. The scattered amplitude therefore becomes:

The scattering amplitude is related to the Fourier transform of the potential function.

Scattering by a potential

Born approximation

The scattering amplitude is related to the Fourier transform of the potential function.

$$
f_{k}(\theta, \phi)=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int V(\mathbf{r}) e^{-i \mathbf{k r}} d^{3} r
$$

With the Fermi pseudo potential for neutron scattering from a nucleus $V(\mathbf{r})=\frac{2 \pi \hbar^{2}}{m_{n}} b \delta^{3}(\mathbf{r})$

$$
\left|f_{k}(\theta, \phi)\right|=b
$$

Neutron scattering from a nucleus is isotropic!

Scattering by a potential

Atomic form factor or scattering length

The amplitude of the scattered wave (the Fourier transform of the potential function) is called the atomic form factor f (X-rays) or scattering length b (neutrons).

advantage with neutrons: scattered intensity does not drop with increasing scattering angle

Scattering by a potential

Nuclear scattering

Scattering lengths (analog to X-ray form factor)

superposition of resonance scattering with slowly increasing potential scattering due to atomic weight

advantages: contrast between neighbouring elements light elements can be measured easily isotope effect ($\mathrm{b}_{\boldsymbol{H}}=-3.7, \mathrm{~b}_{\mathrm{D}}=6.8$)

Scattering by a potential

Nuclear scattering

Scattering lengths (analog to X-ray form factor)

superposition of resonance scattering with slowly increasing potential scattering due to atomic weight

Example KCl :
scattering lengths of K and Cl are very different \longrightarrow strong contrast

X-rays would see a primitive cell with half the lattice constant

advantages: contrast between neighbouring elements light elements can be measured easily isotope effect ($\mathrm{b}_{\boldsymbol{H}}=-3.7, \mathrm{~b}_{\mathrm{D}}=6.8$)

Scattering by a potential

Magnetic scattering

Magnetic scattering arises due to the interaction of the neutron spin with the magnetic field of an unpaired electron.

$$
\text { neutron spin operator: } \quad \hat{\boldsymbol{\mu}}=\gamma \mu_{N} \hat{\boldsymbol{\sigma}}
$$

The interaction is described by the potential:

$$
-\hat{\boldsymbol{\mu}} \cdot \mathbf{H}=-\gamma \mu_{N} \hat{\boldsymbol{\sigma}} \cdot \mathbf{H}
$$

Magnetic scattering length proportional to electron radius $\mathrm{e}^{2} / \mathrm{mec}^{2}$:

$$
r_{0}=\frac{\gamma e^{2}}{m_{e} c^{2}}=-0.54 \cdot 10^{-12} \mathrm{~cm} \quad \longrightarrow \text { comparable to nuclear scattering }
$$

Scattering by a potential

Magnetic scattering

Magnetic field due to a single electron moving with velocity $\mathbf{v e}_{\mathrm{e}}$:

$$
\mathbf{H}=\operatorname{curl}\left(\frac{\boldsymbol{\mu}_{e} \times \mathbf{R}}{|\mathbf{R}|^{3}}\right)+\frac{(-e)}{c} \frac{\mathbf{v}_{e} \times \mathbf{R}}{|\mathbf{R}|^{3}}
$$

(from S. W. Lovesey,
Theory of Neutron Scattering from Condensed Matter, Volume 2)

The scattering cross section between the neutron and the electron becomes (after 2 pages):

$$
\frac{d^{2} \sigma}{d \Omega d E}=r_{o}^{2} \frac{k_{f}}{k_{i}} \sum_{\alpha \beta}\left(\delta_{\alpha \beta}-\tilde{k}_{\alpha} \tilde{k}_{\beta}\right) \sum_{\lambda \lambda^{\prime}} p_{\lambda}\langle\lambda| \hat{k}_{\alpha}^{2}\left|\lambda^{\prime}\right\rangle\langle\lambda| \hat{k}_{\beta}^{2}\left|\lambda^{\prime}\right\rangle \delta\left(\hbar \omega+E_{\lambda}-E_{\lambda^{\prime}}\right)
$$

In comparison to nuclear scattering the magnetic cross section has a directional dependence!

Scattering by a potential

Magnetic scattering

Like for nuclear scattering the Born approximation holds and the scattered amplitude is the Fourier transformation of the potential function (atomic magnetisation density), the magnetic form factor.

$$
f(\mathbf{k})=\int \rho(\mathbf{r}) \exp (i \mathbf{k r}) d \mathbf{r}
$$

which is defined by:

$$
f(\mathbf{k})=\frac{g_{S}}{g} j_{0}(\mathbf{k})+\frac{g_{L}}{g}\left[j_{0}(\mathbf{k})+j_{2}(\mathbf{k})\right]
$$

g, g_{L}, g_{s} : gyromagnetic ratios
 j_{n} : spherical Bessel functions

Scattering by a potential

Magnetic scattering

Like for nuclear scattering the Born approximation holds and the scattered amplitude is the Fourier transformation of the potential function (atomic magnetisation density), the magnetic form factor.

$$
f(\mathbf{k})=\int \rho(\mathbf{r}) \exp (i \mathbf{k r}) d \mathbf{r}
$$

which is defined by:

$$
f(\mathbf{k})=\frac{g_{S}}{g} j_{0}(\mathbf{k})+\frac{g_{L}}{g}\left[j_{0}(\mathbf{k})+j_{2}(\mathbf{k})\right]
$$

analytical approximation: $\quad j_{0}(s)=A \exp \left(-a s^{2}\right)+B \exp \left(-b s^{2}\right)+C \exp \left(-c s^{2}\right)+D$

$$
j_{2}(s)=\left(A \exp \left(-a s^{2}\right)+B \exp \left(-b s^{2}\right)+C \exp \left(-c s^{2}\right)+D\right) s^{2}
$$

$$
s=\frac{\sin \theta}{\lambda}
$$

coefficients a, A, b, B, c, C, D tabulated on http://www.ill.eu/sites/ccsl/html/ccsldoc.html)

Diffraction condition

Bragg's law

Imagine a crystal with only one atom per unit-cell. For which \mathbf{k} is the intensity non-zero?

lattice planes with Miller indices hkl (hkl) intercepts real cell axes at a/h b/k c/l d is the distance between the planes

Diffraction can be considered as the coherent superposition of scattered waves from this set of planes

Diffraction condition

Bragg's law

Imagine a crystal with only one atom per unit-cell. For which \mathbf{k} is the intensity non-zero?

lattice planes with Miller indices hkl (hkl) intercepts real cell axes at a/h b/k c/l d is the distance between the planes

Path length difference: $2 d \sin \theta$ Constructive interference: $n \cdot \lambda$
Bragg law: $\quad n \lambda=2 d \sin \theta$

Diffraction condition

Laue condition (equivalent to Bragg's law)

Scattering of plane wave exp(ikr) from two lattice points at 0 and \mathbf{R}

The path difference is:

$$
\Delta s(\mathbf{R})=\mathbf{R} \cdot \frac{\mathbf{k}_{f}}{k_{f}}-\mathbf{R} \cdot \frac{\mathbf{k}_{i}}{k_{i}}
$$

Constructive interference for:

$$
\Delta s=n \cdot \lambda=n \cdot \frac{2 \pi}{k} \quad\left(k=k_{i}=k_{f}\right)
$$

With definition of reciprocal lattice $\mathbf{G} \cdot \mathbf{R}=n \cdot 2 \pi$:

$$
\Delta s \cdot k=\mathbf{R} \cdot\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right)=\mathbf{R} \cdot \mathbf{k}=n \cdot 2 \pi=\mathbf{G} \mathbf{R} \Rightarrow \mathbf{k}=\mathbf{G}
$$

Momentum transfer equal to a lattice vector \longrightarrow Crystal can only provide discrete momentum kicks

Scattering from a unit cell

Structure factor (nuclear scattering)

imagine two scattering potentials (atoms), the first at 0 , the second at \mathbf{r}

The path difference is:

$$
\Delta s(\mathbf{r})=\mathbf{r} \cdot \frac{\mathbf{k}_{f}}{k_{f}}-\mathbf{r} \cdot \frac{\mathbf{k}_{i}}{k_{i}}
$$

Therefore, the phase difference is:

$$
\varphi(\mathbf{r})=2 \pi \frac{\Delta s}{\lambda}=k \Delta s=\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \cdot \mathbf{r}=\mathbf{G} \cdot \mathbf{r}
$$

Sum up phase differences over atoms in unit cell:

$$
F(h k l)=\sum_{j} b_{j} \exp \left(i \mathbf{G r}_{j}\right)=\sum_{j} b_{j} \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right] \mathbf{r} \cdot \frac{\mathbf{k}_{i}}{k_{i}} \mathbf{r} \cdot \frac{\mathbf{k}_{f}}{k_{f}}
$$

Structure factor $F(h k l)$ is the Fourier transform of the unit cell scattering potential.

Scattering from a unit cell

Structure factor (magnetic scattering)

The magnetic structure factor is obtained in the same way, but it is also proportional to the magnetic moment of the involved atoms \longrightarrow directional dependence, \mathbf{F}_{M} is a vector

$$
\mathbf{F}_{M}(h k l)=\sum_{j} \boldsymbol{\mu}_{j} f(\mathbf{k}) \exp \left(i \mathbf{k r}_{j}\right)=\sum_{j} \boldsymbol{\mu}_{j} f(\mathbf{k}) \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right]
$$

Only the component of \mathbf{F}_{M} which is perpendicular to \mathbf{k} contributes to magnetic scattering:

$$
\mathbf{Q}_{M}=\hat{\mathbf{k}} \times\left(\mathbf{F}_{M} \times \hat{\mathbf{k}}\right)
$$

Equivalent: Projection of F_{M} onto (hkl) plane

Scattering from a unit cell

Example: ferromagnetic structure

$$
\mathbf{F}_{M}(h k l)=\sum_{j} \boldsymbol{\mu}_{j} f(\mathbf{k}) \exp \left(i \mathbf{k r}_{j}\right)=\sum_{j} \boldsymbol{\mu}_{j} f(\mathbf{k}) \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right]
$$

$$
\begin{aligned}
\mathbf{F}_{M}(100) & =\left(\begin{array}{c}
0 \\
\mu \\
0
\end{array}\right) f(\mathbf{k}) \\
\mathbf{Q}_{M}(100) & =F_{M}(100)
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{F}_{M}(010)=\left(\begin{array}{c}
0 \\
\mu \\
0
\end{array}\right) f(\mathbf{k}) \\
\mathbf{Q}_{M}(010)=0
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{F}_{M}(001) & =\left(\begin{array}{c}
0 \\
\mu \\
0
\end{array}\right) f(\mathbf{k}) \\
\mathbf{Q}_{M}(001) & =F_{M}(001)
\end{aligned}
$$

$\mathbf{F}_{M}(110)=\left(\begin{array}{c}0 \\ \mu \\ 0\end{array}\right) f(\mathbf{k})$
$\mathbf{Q}_{M}(110)=\mathbf{F}_{M}(110) \sin \alpha$

NEUTRONS FOR SCIENCE

Symmetry in reciprocal space

Friedel law

... relates inverse Q points and stems from the property of Fourier transforms of real functions:

$$
F(\mathbf{k})=\sum_{j} b_{j} \exp \left(i \mathbf{k} \mathbf{r}_{j}\right)
$$

if b_{j} is real then:

$$
F(-\mathbf{k})=\sum_{j} b_{j} \exp \left(-i \mathbf{k r}_{j}\right)=F^{*}(\mathbf{k})
$$

since the scattered intensity is proportional to $F F^{*}$

$$
I(\mathbf{k})=F(\mathbf{k}) F^{*}(\mathbf{k})=F^{*}(-\mathbf{k}) F(-\mathbf{k})=I(-\mathbf{k})
$$

\rightarrow scattered intensities of Friedel pairs are equal if b_{j} are real reciprocal space has inversion symmetry even if the real space has not

Symmetry in reciprocal space

- Friedel law holds almost all of the time (especially in neutron scattering unless very high incident energies are used)
- Symmetries in real space are also valid in reciprocal space (without the translation)
- Combining the two above $\longrightarrow 11$ Laue groups

Crystal system	Laue class
triclinic	-1
monoclinic	$2 / m$
orthorhombic	$m m m$
tetragonal	$4 / m ; 4 / m m m$
trigonal	$-3 ;-3 / m$
hexagonal	$6 / m ; 6 / m m m$
cubic	$m 3 ; m 3 m$

crystal system can only be determined by the Laue symmetry (symmetry of intensities)

Example: lattice parameters nearly orthorhombic

$$
\begin{array}{ccc}
a=10.097 \AA & b=13.978 \AA & c=18.123 \AA \\
\alpha=90.00^{\circ} & \beta=90.10^{\circ} & \gamma=90.00^{\circ}
\end{array}
$$

$$
\begin{aligned}
& \text { 2/m: }(\mathrm{hkl})=(-\mathrm{h}-\mathrm{k}-\mathrm{I})=(\mathrm{h}-\mathrm{k} \mathrm{I})=(-\mathrm{h} k-\mathrm{I}) \\
& \text { mmm: }(\mathrm{h} k \mathrm{I})=(-\mathrm{h}-\mathrm{k}-\mathrm{I})=(\mathrm{h}-\mathrm{kI})=(-\mathrm{h} k-\mathrm{I}) \\
& =(-h k I)=(h-k-I)=(-h-k I)=(h k-I)
\end{aligned}
$$

Symmetry in reciprocal späce

- Friedel law holds almost all of the time
(especially in neutron scattering unless very high incident energies are used)
- Symmetries in real space are also valid in reciprocal space (without the translation)
- Combining the two above $\longrightarrow 11$ Laue groups

crystal system can only be determined by the Laue symmetry (symmetry of intensities)

Example: lattice parameters nearly orthorhombic

$$
\begin{array}{ccc}
a=10.097 \AA & b=13.978 \AA & c=18.123 \AA \\
\alpha=90.00^{\circ} & \beta=90.10^{\circ} & \gamma=90.00^{\circ}
\end{array}
$$

2/m: $(\mathrm{hkl})=(-\mathrm{h}-\mathrm{k}-\mathrm{I})=(\mathrm{h}-\mathrm{k} \mathrm{I})=(-\mathrm{h} k-\mathrm{I})$
mmm: $(\mathrm{h} \mathrm{kI})=(-\mathrm{h}-\mathrm{k}-\mathrm{I})=(\mathrm{h}-\mathrm{k} \mathrm{I})=(-\mathrm{h} k-\mathrm{I})$

$$
=(-h k I)=(h-k-I)=(-h-k I)=(h k-I)
$$

Symmetry in reciprocal space

Systematic absences

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering
- screw axes
- glide planes

Direct consequence of exact cancellation of structure factors. Example C-centering:

$$
\begin{aligned}
F(h k l) & =b\left[e^{2 \pi i(h x+k y+l z)}+e^{2 \pi i[h(x+1 / 2)+k(y+1 / 2)+l z]}\right) \\
& =b e^{2 \pi i(h x+k y+l z)} \cdot\left(1+e^{\pi i(h+k)}\right) \\
& =\left\{\begin{array}{lll}
2 b & , \text { if } & h+k=2 n \\
0 & , \text { if } & h+k=2 n+1
\end{array}\right.
\end{aligned}
$$

Symmetry in reciprocal space

Systematic absences

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering
- screw axes
- glide planes

Direct consequence of exact cancellation of structure factors. Example screw axis:

$$
\begin{aligned}
F(h k l) & =b\left[e^{2 \pi i(h x+k y+l z)}+e^{2 \pi i[-h x-k y+l(z+1 / 2)]}\right] \\
& =b e^{2 \pi i l z} \cdot\left(1+e^{\pi i l}\right) \quad(\text { for } h=k=0)
\end{aligned}
$$

\Rightarrow only (00l) reflections with $l=$ even

Scattering from a unit cell

The phase problem

Now we know how to calculate the structure factor:

$$
F(h k l)=\sum_{j} b_{j} \exp \left(i \mathbf{G r}_{j}\right)=\sum_{j} b_{j} \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right]
$$

BUT... a diffraction experiment yields the intensity of the scattered wave:

$$
I \sim F^{2}
$$

Important information is lost as only the amplitude can be recovered.
This is known as the phase problem in crystallography.

Consequence: The scattering potential cannot be determined without a model.

How to describe a magnetic structure?

Magnetic structures

Ordered magnetic state

In some crystals, some of the atoms/ions have unpaired electrons (transition metals, rareearths).

Hunds' rule favors a state with maximum S and J . The ions possess a localised magnetic moment.

Exchange interactions (direct, superexchange, double exchange, RKKY, dipolar, ...) often stabilize a long-range magnetic order

Magnetic structures

Propagation vector

The magnetic structure does not necessarily have the same periodicity and symmetry as the underlying crystal structure. The relation between one and another is expressed by the propagation or wave vector.

Magnetic structures

Propagation vector

The magnetic structure does not necessarily have the same periodicity and symmetry as the underlying crystal structure. The relation between one and another is expressed by the propagation or wave vector.

ferromagnetic

$$
\text { magnetic periodicity }=\text { nuclear periodicity } \rightarrow \mathbf{q}=0
$$

Magnetic structures

Propagation vector

The magnetic structure does not necessarily have the same periodicity and symmetry as the underlying crystal structure. The relation between one and another is expressed by the propagation or wave vector.
antiferromagnetic

Magnetic structures

Propagation vector

The magnetic structure does not necessarily have the same periodicity and symmetry as the underlying crystal structure. The relation between one and another is expressed by the propagation or wave vector.

commensurate antiferromagnetic

magnetic periodicity $=2 \times$ nuclear periodicity $\rightarrow \mathbf{q}=\left(\begin{array}{lll}1 / 2 & 0 & 0\end{array}\right)$

Magnetic structures

Propagation vector

The magnetic structure does not necessarily have the same periodicity and symmetry as the underlying crystal structure. The relation between one and another is expressed by the propagation or wave vector.
incommensurate antiferromagnetic

magnetic periodicity $=\mathbf{x}$ times nuclear periodicity $\rightarrow \mathbf{q}=(1 / x 00)$

Magnetic structures

Propagation vector

Magnetic Bragg reflections can be found at $\mathbf{k}=\mathbf{G}+\mathbf{q}$
superposition for $\mathbf{q}=0$

ferromagnetic

commensurate AF $\mathbf{q}=(1 / 200)$

incommensurate AF

$$
\mathbf{q}=(1 / 2-\delta 00)
$$

Magnetic structures

Fourier expansion of magnetic moments

One usually describes magnetic structures with Fourier components of the magnetic moments:

$$
\boldsymbol{\mu}(\mathbf{r})=\sum_{q} \mathbf{S}_{q} \cdot e^{-i \mathbf{q} \mathbf{r}}
$$

which for a single propagation vector becomes:

$$
\boldsymbol{\mu}(\mathbf{r})=\mathbf{S}_{q} \cdot e^{-i \mathbf{q} \mathbf{r}}+\mathbf{S}_{-q} \cdot e^{i \mathbf{q} \mathbf{r}}
$$

\mathbf{S}_{q} is a complex vector made of linear combinations of basis vectors according to one or more irreducible representations.

Since $\boldsymbol{\mu}(\mathbf{r})$ is a real vector, one must impose the condition $\mathbf{S}_{-q}^{*}=\mathbf{S}_{q}$

Magnetic structures

Types of magnetic order

$\mathrm{q}=0$ ferromagnetic

$$
\boldsymbol{\mu}\left(\mathbf{r}_{j}\right)=\mathbf{S}_{q} \cdot e^{-i \mathbf{q} \mathbf{r}}=\mathbf{S}_{q}
$$

$\mathrm{q}=(100)$ antiferromagnetic (centered cells)

$$
\boldsymbol{\mu}(\mathbf{r})=\sum_{q} \mathbf{S}_{q} \cdot e^{-i \mathbf{q} \mathbf{r}}=\mathbf{S}_{q} \cdot(-1)^{n}
$$

Magnetic structures

Types of magnetic order
antiferromagnetic, $\mathbf{q}=1 / 2 \mathbf{G}$ (at the border of the 1 st Brillouin zone)

$$
\boldsymbol{\mu}(\mathbf{r})=\sum_{q} \mathbf{S}_{q} \cdot e^{-i \mathbf{q r}}=\mathbf{S}_{q} \cdot(-1)^{n}
$$

real Fourier components

Magnetic structures

Types of magnetic order
amplitude-modulated antiferromagnetic, $\mathbf{q}<1 / 2 \mathbf{G}$ (at the interior of the 1 st Brillouin zone)

$$
\mathbf{S}_{q}=\frac{1}{2} \mu \hat{\mathbf{u}} e^{-2 \pi i \phi_{q}} \quad \mu(\mathbf{r})=\mu \hat{\mathbf{u}} \cos \left[2 \pi\left(\mathbf{q} \mathbf{r}+\phi_{q}\right)\right]
$$

imaginary Fourier components (real and imaginary parts parallel)

Magnetic structures

Types of magnetic order

antiferromagnetic spirals, $\mathbf{k}<1 / 2 \mathbf{G}$ (at the interior of the 1 st Brillouin zone)

$\mathbf{S}_{q}=\frac{1}{2}\left(\mu_{u} \hat{\mathbf{u}}+i \mu_{v} \hat{\mathbf{v}}\right) e^{-2 \pi i \phi_{q}}$

$$
\mu(\mathbf{r})=\mu_{u} \hat{\mathbf{u}} \cos \left[2 \pi\left(\mathbf{q} \mathbf{r}+\phi_{q}\right)\right]+\mu_{v} \hat{\mathbf{v}} \sin \left[2 \pi\left(\mathbf{q} \mathbf{r}+\phi_{q}\right)\right]
$$

imaginary Fourier components (real and imaginary parts perpendicular)

Magnetic structures

Types of magnetic order
multi-q structures, e.g. conical (ferromagnetic $k=0$ component + helix)

treatment of every component separately

Magnetic structures

Representation analysis

identify the symmetry operators of the space group which are compatible with the magnetic translation symmetry \longrightarrow little group

$$
\mathbf{R} \cdot \mathbf{q}=\mathbf{q}+\mathbf{G}
$$

symmetry operations with or without time inversion yield different irreducible representations \longrightarrow magnetic models
transform a spin with Fourier components (uvw) according to the magnetic symmetry operations \longrightarrow spin configuration
test the different irreducible representations on the data and refine the free parameters

Magnetic structures

Example: $\mathrm{CO}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$

2 magnetic sites $S_{1}(a, b), S_{2}(a, b, c, d), q=0$

	X-Component	Y-Component	Z-Component
Γ_{1}	$S_{1 a x}-S_{1 b x}$	$S_{2 a y}+S_{2 c y}-\left(S_{2 b y}+S_{2 d y}\right)$	
Γ_{2}		$S_{2 a y}+S_{2 b y}-\left(S_{2 c y}+S_{2 d y}\right)$	
Γ_{3}	$S_{1 a y}-S_{1 b y}$	$S_{1 a z}+S_{1 b z}$ $\Gamma_{4}+S_{2 c x}-\left(S_{2 b x}+S_{2 d x}\right)$	$S_{2 a z}+S_{2 b z}+S_{2 c z}+S_{2 d z}$
Γ_{5}	$S_{2 a x}+S_{2 b x}-\left(S_{2 c x}+S_{2 d x}\right)$	$S_{2 a y}+S_{2 a y}+S_{1 b y}+S_{2 c y}+S_{2 d y}$	$S_{2 a z}+S_{2 d z}-\left(S_{2 b z}+S_{2 c z}\right)$
Γ_{6}	$S_{2 a y}+S_{2 d y}-\left(S_{2 b y}+S_{2 c y}\right)$	$S_{1 a z}-S_{1 b z}$	
Γ_{7}	$S_{2 a x}+S_{2 b x}+S_{2 c x}+S_{2 d x}$		
Γ_{8}	$S_{2 a x}+S_{2 d x}-\left(S_{2 b x}+S_{2 c x}\right)$	$S_{2 a z}+S_{2 c z}-\left(S_{2 b z}+S_{2 d z}\right)$	

Magnetic structures

Example: $\mathrm{CO}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$

2 magnetic sites $S_{1}(a, b), S_{2}(a, b, c, d), q=(0, \delta, 0)$

	X-Component	Y-Component	Z-Component
Γ_{1}	$S_{1 a x}-S_{1 b x}$		
		$S_{2 a y}-S_{2 b y}$	
		$S_{2 c y}-S_{2 d y}$	$S_{1 a z}-S_{1 b z}$
Γ_{2}		$S_{1 a y}+S_{1 b y}$	
	$S_{2 a y}+S_{2 b y}$	$S_{2 c y}+S_{2 d y}$	$S_{1 a z}+S_{1 b z}$
Γ_{3}		$S_{1 a y}-S_{1 b y}$	$S_{2 a z}+S_{2 b z}$
	$S_{2 a x}-S_{2 b x}$		$S_{2 c z}+S_{2 d z}$
Γ_{4}	$S_{2 c x}-S_{2 d x}$		$S_{2 a z}-S_{2 b z}$
	$S_{2 a x}+S_{1 b x}$		$S_{2 c z}-S_{2 d z}$

Magnetic structures

Example: $\left(\mathrm{Coo}_{0.1} \mathrm{Nio}_{0.3}\right)_{3} \mathrm{~V}_{2} \mathrm{O}_{8} \quad \mathbf{q}=(\delta, 0,0)$

Site p	Atom r	(x, y, z)	ψ_{1}	ψ_{4}	$\psi_{1}+\psi_{4}$
$c(4 a)$	1	(0, 0, 0)	$\left(\begin{array}{c}u_{1, c} \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{c}0 \\ v_{4, c} \\ w_{4, c}\end{array}\right)$	$\left(\begin{array}{c}i u_{1, c} \\ v_{4, c} \\ w_{4, c}\end{array}\right)$
	2	$\left(0, \frac{1}{2}, \frac{1}{2}\right)$	$\left(\begin{array}{c}\bar{u}_{1, c} \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{c}0 \\ \bar{v}_{4, c} \\ w_{4, c}\end{array}\right)$	$\left(\begin{array}{c}i \bar{u}_{1, c} \\ \bar{v}_{4, c} \\ w_{4, c}\end{array}\right)$
$s(8 e)$	1	$\left(\frac{1}{4}, y, \frac{1}{4}\right)$	$\left(\begin{array}{c}i u_{1, s} \\ v_{1, s} \\ i w_{1, s}\end{array}\right)$	$\left(\begin{array}{c}u_{4, s} \\ i v_{4, s} \\ w_{4, s}\end{array}\right)$	$\left(\begin{array}{c}\bar{u}_{1, s}+u_{4, s} \\ i v_{1, s}+i v_{4, s} \\ \bar{w}_{1, s}+w_{4, s}\end{array}\right)$
	2	$\left(\frac{1}{4}, \bar{y}, \frac{3}{4}\right)$	$\left(\begin{array}{c}i u_{1, s} \\ \bar{v}_{1, s} \\ i \bar{w}_{1, s}\end{array}\right)$	$\left(\begin{array}{c}\bar{u}_{4, s} \\ i v_{4, s} \\ w_{4, s}\end{array}\right)$	$\left(\begin{array}{c}\bar{u}_{1, s}+\bar{u}_{4, s} \\ i \bar{v}_{1, s}+i v_{4, s} \\ w_{1, s}+w_{4, s}\end{array}\right)$
	3	$\left(\frac{1}{4}, \bar{y}+\frac{1}{2}, \frac{3}{4}\right)$	$\left(\begin{array}{c}i \bar{u}_{1, s} \\ v_{1, s} \\ i \bar{w}_{1, s}\end{array}\right)$	$\left(\begin{array}{c}u_{4, s} \\ i \bar{v}_{4, s} \\ w_{4, s}\end{array}\right)$	$\left(\begin{array}{c}u_{1, s}+u_{4, s} \\ i v_{1, s}+i \bar{v}_{4, s} \\ w_{1, s}+w_{4, s}\end{array}\right)$
	4	$\left(\frac{1}{4}, y+\frac{1}{2}, \frac{1}{4}\right)$	$\left(\begin{array}{c}i \bar{u}_{1, s} \\ \bar{v}_{1, s} \\ i w_{1, s}\end{array}\right)$	$\left(\begin{array}{c}\bar{u}_{4, s} \\ i \bar{v}_{4, s} \\ w_{4, s}\end{array}\right)$	$\left(\begin{array}{c}u_{1, s}+\bar{u}_{4, s} \\ i \bar{v}_{1, s}+i \bar{v}_{4, s} \\ \bar{w}_{1, s}+w_{4, s}\end{array}\right)$

The basic diffractometer

Diffraction techniques

Powder diffraction

D20 (high flux)

sample in a vanadium container V scatters only incoherently

Diffraction techniques

Powder diffraction

Diffraction techniques

Powder diffraction

Result: Diffraction pattern

Useful information lies in the

- position
- the intensity
- the shape and width
of the reflections.

Diffraction techniques

Powder diffraction

1. Position

monoclinic

$$
d=\left(\frac{h^{2}}{a^{2} \sin ^{2} \beta}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2} \sin ^{2} \beta}-\frac{2 h l \cos \beta}{a c \sin ^{2} \beta}\right)^{-\frac{1}{2}}
$$

orthorhombic

$$
\begin{gathered}
d=\left(\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\
\text { cubic } \\
d=a\left(h^{2}+k^{2}+l^{2}\right)^{-\frac{1}{2}}
\end{gathered}
$$

with θ and λ known \rightarrow able to obtain lattice parameters

Diffraction techniques

Powder diffraction

2. Intensity $I \sim F^{2}$

nuclear structure factor
(interaction between neutron and core potential of nuclei)

$$
F_{N}(\mathbf{k})=\sum_{j} b_{j} \exp \left(i \mathbf{k r}_{j}\right) \exp \left(-B_{j} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)
$$

magnetic structure factor
(interaction between neutron and electron's magnetic field)

$$
\mathbf{F}_{M}(\mathbf{k})=\sum_{j} \boldsymbol{\mu}_{j} f_{j}(\mathbf{k}) \exp \left(i \mathbf{k r}_{j}\right) \exp \left(-B_{j} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)
$$

magnetic form factor

$$
f(\mathbf{k})=\int_{-\infty}^{\infty} \rho_{\text {mag }}(\mathbf{r}) \exp (i \mathbf{k r}) d \mathbf{r}
$$

Diffraction techniques

Powder diffraction

3. Peak width and shape

source, monochromator, slits, collimators, sample strain, stress, etc. have an influence on the peak shape and the peak width

Caglioti formula

$$
F W H M^{2}=u \tan ^{2} \theta+v \tan \theta+w
$$

resolution function minimum at the take-off angle $2 \theta_{\mathrm{m}}$
 (focussing effect)

Diffraction techniques

Powder diffraction - Corrections

Lorentz factor
 Asymmetry

Preferred orientation Absorption
needles, platelets, etc. sample absorption tend to have a preferred is angle dependent orientation
no statistical orientation of crystallites
some (hkl) families like e.g. (hk0), (00l), etc. might be favoured

Diffraction techniques

Single crystal diffraction

- single crystal experiments take 3-10 days
- only if neutron powder and X-ray single crystal experiments fail
- Iattice parameters and rough orientation need to be known (not for Laue)
- different techniques: normal beam, 4 circle, Laue, ...

Diffraction techniques

Single crystal diffraction - 4 circle mode

Diffraction techniques

Single crystal diffraction - Normal beam mode

cryomagnets, pressure cells, ... cannot be tilted much
\rightarrow confined to the scattering plane e.g. only ($h k 0$) reflections
\rightarrow lifting counter able to reach $I=1,2 \ldots$

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample

- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

single crystal glued on an aluminium sample holder

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample

- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections

- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

set 2θ and adjust χ, ϕ
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

set 2θ and adjust χ, ϕ
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

set 2θ and adjust χ, ϕ
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

set 2θ and adjust χ, ϕ
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

phase diagram of CuO Villareal et al., PRL 109167206 (2012)
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

move crystal through reflection position by scanning ω (or $\omega-x \theta$)

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections

sophisticated fitting routines e.g. COLL5, RACER
- make necessary corrections
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

(120) (12̄0)
(1120) ($\overline{1} \overline{2} 0)$

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

Lorentz factor

Extinction

Multiple scattering $\left(h_{2}-h_{1} \quad k_{2}-k_{1} \quad l_{2}-l_{1}\right)$

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

magnetic structure of $\left(\mathrm{Co}_{0.1} \mathrm{Ni}_{0.9}\right)_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - Laue method

polychromatic beam

\rightarrow every accessible $h k l$ plane is in reflection position for a particular wavelength

Diffraction techniques

Single crystal diffraction - Laue method

- quickly orient single crystals
- observe phase transitions
- magnetic satellites
- find propagation vectors

Summary

Nuclear scattering

Diffraction yields structural information: lattice constants, atomic positions, atomic displacement factors, occupations, space group symmetry, stress and strain

Advantages of neutrons with respect to X-rays:
sensitive to the nuclei position, contrast of scattering lengths, isotope effect, isotropic scattering

The scattering length is the Fourier transform of the atomic scattering potential function.

The structure factor is the Fourier transform of the unit cell scattering potential functions.

We measure $I \sim F^{2} \longrightarrow$ phase information is lost \longrightarrow models necessary

Magnetic scattering

Only the component of the magnetic moment perpendicular to the scattering vector is effective in magnetic scattering.

Representation analysis is a powerful tool to derive symmetry-adapted spin configurations. Important reduction of refinable parameters!

The magnetic form factor is the Fourier transform of the atomic scattering potential function.

The structure factor is the Fourier transform of the unit cell scattering potential functions.

We measure $I \sim F^{2} \longrightarrow$ phase information is lost \longrightarrow models necessary

