Strongly Correlated Systems and Mott-Hubbard-Heisenberg paradigm

- Mott-Hubbard insulating state arises from electron-electron interactions
- Mott-Hubbard metal-insulator transition independent of magnetic order
- Low-energy spin physics described by isotropic Heisenberg Hamiltonian

Beyond the Mott-Hubbard-Heisenberg Paradigm

Strong Spin-Orbit Coupling Limit

Witczak-Krempa et al., arXiv:1305.2193

Z Dependence of Energy Scales

- For the late 3d series, U >> W, and are consequently strongly correlated: λ is small.
- In the 5d series, W~U, and in the absence of SOC, generally expect metallic behaviour
- However, the fact that $U^{\sim}\lambda$ have similar energy scale (1 eV) plays a decisive role
- Delocalisation implies covalency effects may also play an important role

Nature and Evolution of the Mott-like insulating state in Sr_{n+1}Ir_nO_{3n+1}

 $I4_1/acd$

Bbcb or I4/mmm

Novel Groundstates and Excitations in Iridates

Exquisite sensitivity of interactions for Jeff=1/2 state to lattice topology

Here and henceforth S refers to the pseudo or isospin of the low energy projected model

$\mathcal{H} = J\mathbf{S}_i \cdot \mathbf{S}_j + K\mathbf{S}_i^{\gamma}\mathbf{S}_j^{\gamma}$

Kitaev-Heisenberg Model

Predicted to give rise to novel phases and excitations

- Excellent at identifying the existence of phase transitions
- Very difficult to deduce anything detailed concerning nature of the groundstate or excitations

Sr₂IrO₄: Evidence for J_{eff}=1/2 model

B.J. Kim et al., Science, 323 (2009), X-ray Resonant Magnetic Scattering

Conclusion: Large L3/L2 branching ratio => J_{eff}=1/2 model

$$|j_{\text{eff}} = \frac{1}{2}\rangle_c = \frac{|xy, -\rangle + |yz, +\rangle - i|zx, +\rangle}{\sqrt{3}}$$

How to determine the magnetic structure using REXMS Step 1: Determine the ordering wavevector

Scattering length for dipole resonances (E1)

$$f_{E1}^{XMRS} = -iF_{E1}^{(1)} \begin{pmatrix} \sigma \rightarrow \sigma' & \pi \rightarrow \sigma' \\ \sigma \rightarrow \pi' & \pi \rightarrow \pi' \end{pmatrix} = -iF_{E1}^{(1)} \begin{pmatrix} 0 & z_1 \cos\theta + z_3 \sin\theta \\ -z_1 \cos\theta + z_3 \sin\theta & -z_2 \sin2\theta \end{pmatrix}$$

Expect REXMS (dipole) scattering in rotated polarization channel only

Magnetic ordering wavevector k = (½ ½ 0) => Antiferromagnetic coupling in a-b plane

How to determine the magnetic structure using REXMS

Step 2: Determine the relative phases

How to determine the magnetic structure using REXMS Step 2: Determine the relative phases (continued)

- Etc.

How to determine the magnetic structure using REXMS Step 3: Determine the directions of the magnetic moments

How to determine the magnetic structure using REXMS Step 3: Determine the directions of the magnetic moments

Conclude that moments in $Sr_3Ir_2O_7$ are purely oriented along the c direction

Moment reorientation transition driven by dimensionality

Sr₂IrO₄

J.W. Kim et al. PRL (2012)

Moment reorientation for n=2 driven by inter-layer pseudo-diploar couplings arising from strong spin-orbit coupling

$$\mathcal{H}_{ij} = J_1 \vec{S}_i \cdot \vec{S}_j + J_2 (\vec{S}_i \cdot \vec{r}_{ij}) (\vec{r}_{ij} \cdot \vec{S}_j)$$

 $Sr_3Ir_2O_7$

Kim et al. Science (2009) Boseggia et al. PRL (2013) Tetragonal crystal field splitting Boseggia et al. JPCM (2013)

What else can we learn from REXMS? Symmetry of the groundstate wavefunction

Resonant X-ray scattering and the jeff=1/2 electronic ground state Morreti Sala et al. Phys. Rev. Lett. (2014)

$$\mathcal{H} = \zeta \mathbf{L} \cdot \mathbf{S} - \Delta \langle L_z \rangle^2$$

Conclude from branching ratio:

Sr₃Ir₂O₇

- Jeff=1/2 state is realised in Sr₃Ir₂O₇
- Ambiguity in Sr₂IrO₄ as moments lie in basal plane

The magnetic structure of Sr₂IrO₄

Kim et al., Science (2009), Boseggia et al. PRL (2013) Boseggia et al. JPCM (2013)

- REXS experiments establish that Ir moments are AF coupled along [100] direction and lie in the a-b plane
- Key prediction of Jeff=1/2 model by Jackeli and Khaliullin is that the moments are canted to follow rigidly the rotation of the IrO₆ octahedra
- Test the model by measuring reflections sensitive to canted AF component

- A sublattice, dominant AF order along a axis: reflections of type (1 0 4n) or (0 1 4n+2)
- B sublattice, canted AF order along b axis: reflections of type (0 0 2n+1)
- Ratio of intensity of reflections can be used to determine canting angle

Locking of Ir magnetic moments to the correlated rotation of O octahedra in Sr_2IrO_4 Boseggia et al. JPCM (2013)

- Canting angle of magnetic moments of 12.2(8) degrees is within error equal to the rotation angle 11.8 degrees.
- Confirms key prediction of Jeff=1/2 model by Jackeli and Khaliullin
- Can used measured canting angle in theory to place constraints on tetragonal crystal field
- Conclude that Jeff=1/2 state is realised in Sr₂IrO₄

Novel Groundstates and Excitations in Iridates

Exquisite sensitivity of interactions for Jeff=1/2 state to lattice topology

Kitaev-Heisenberg Model $\mathcal{H} = J\mathbf{S}_i\cdot\mathbf{S}_j + K\mathbf{S}_i^{\gamma}\mathbf{S}_j^{\gamma}$

Predicted to give rise to novel phases and excitations