Strongly Correlated Systems and Mott-Hubbard-Heisenberg paradigm

$$
\mathcal{H}_{\text {Hubbard }}=\mathcal{H}_{\text {kinetic }}(t)+\mathcal{H}_{\text {repulsion }}(U)
$$

$$
\mathcal{H}=J \sum_{<i j>} \mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad J=\frac{4 t^{2}}{U}
$$

- Mott-Hubbard insulating state arises from electron-electron interactions
- Mott-Hubbard metal-insulator transition independent of magnetic order
- Low-energy spin physics described by isotropic Heisenberg Hamiltonian

Beyond the Mott-Hubbard-Heisenberg Paradigm Strong Spin-Orbit Coupling Limit

Z Dependence of Energy Scales

- For the late 3 d series, $\mathrm{U} \gg \mathrm{W}$, and are consequently strongly correlated: λ is small.
- In the $5 d$ series, $W^{\sim} \cup$, and in the absence of SOC, generally expect metallic behaviour
- However, the fact that $\mathrm{U}^{\sim} \lambda$ have similar energy scale $(1 \mathrm{eV})$ plays a decisive role
- Delocalisation implies covalency effects may also play an important role

Nature and Evolution of the Mott-like insulating state in $\mathrm{Sr}_{\mathrm{n}+1} 1 \mathrm{r}_{\mathrm{n}} \mathrm{O}_{3 \mathrm{n}+1}$

$\mathrm{Sr}_{3} \mathrm{Ir}_{2} \mathrm{O}_{7}(\mathrm{n}=2)$
bilayer
Ruddlesden-Popper perovskite iridates

Bbcb or $14 / \mathrm{mmm}$

The $\mathrm{J}_{\text {eff }}=1 / 2$ state and the spin-orbit Mott insulator

Single-ion
Large CEF in $5 d \mathrm{ds}$ implies
low spin configurations

B.J. Kim et al. PRL (2008)

$$
\left|j_{\mathrm{eff}}=\frac{1}{2}\right\rangle_{c}=\frac{|x y,-\rangle+|y z,+\rangle-\imath|z x,+\rangle}{\sqrt{3}}
$$

Electron band formation and the opening of a Mott gap
(a)

$\zeta_{s o}$

Novel Groundstates and Excitations in Iridates

Exquisite sensitivity of interactions for Jeff=1/2 state to lattice topology
Landmark paper by Jackeli and Khaliullin, PRL (2009)

Isotropic
Heisenberg Exchange

$$
J_{1} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

(b)

Anisotropic Bond Directional $K \mathrm{~S}_{i}^{\gamma} \mathrm{S}_{j}^{\gamma}$

Here and henceforth S refers to the pseudo or isospin of the low energy projected model

$$
\mathcal{H}=J \mathbf{S}_{i} \cdot \mathbf{S}_{j}+K \mathrm{~S}_{i}^{\gamma} \mathrm{S}_{j}^{\gamma}
$$

Predicted to give rise to novel phases and excitations

Magnetism in $A_{n+1} 1 r_{n} O_{3 n+1}(A=B a, S r)$

Bulk data

$\mathrm{Sr}_{2} \mathrm{IrO}_{4}(\mathrm{n}=1)$ monolayer

$\mathrm{Sr}_{3} \mathrm{Ir}_{2} \mathrm{O}_{7}(\mathrm{n}=2)$
bilayer

- Excellent at identifying the existence of phase transitions
- Very difficult to deduce anything detailed concerning nature of the groundstate or excitations

$\mathrm{Sr}_{2} \mathrm{IrO}_{4}$: Evidence for $\mathrm{J}_{\text {eff }}=1 / 2$ model

B.J. Kim et al., Science, 323 (2009), X-ray Resonant Magnetic Scattering

B $\quad S=1 / 2$ Model
1:1 intensity ratio at L_{3} and L_{2}

Jeff=1/2 Model
resonance only at L_{3} edge

Conclusion: Large L3/L2 branching ratio $=>\mathrm{J}_{\text {eff }}=1 / 2$ model

$$
\left|j_{\mathrm{eff}}=\frac{1}{2}\right\rangle_{c}=\frac{|x y,-\rangle+|y z,+\rangle-2|z x,+\rangle}{\sqrt{3}}
$$

How to determine the magnetic structure using REXMS
Step 1: Determine the ordering wavevector

Determine energy and polarization dependence

Scattering length for dipole resonances (E1)

$$
f_{E 1}^{X X R S}=-i F_{E 1}^{(1)}\left(\begin{array}{cc}
\sigma \rightarrow \sigma^{\prime} & \pi \rightarrow \sigma^{\prime} \\
\sigma \rightarrow \pi^{\prime} & \pi \rightarrow \pi^{\prime}
\end{array}\right)=-i F_{E 1}^{(1)}\left(\begin{array}{cc}
0 & z_{1} \cos \theta+z_{3} \sin \theta \\
-z_{1} \cos \theta+z_{3} \sin \theta & -z_{2} \sin 2 \theta
\end{array}\right)
$$

Expect REXMS (dipole) scattering in rotated polarization channel only
Magnetic ordering wavevector $k=(1 / 21 / 20)$
=> Antiferromagnetic coupling in a-b plane

How to determine the magnetic structure using REXMS
Step 2: Determine the relative phases

Collect integrated peak intensities
($1 / 21 / 2 \mathrm{l}$)

Compare with calculated structure Factors

$$
|\mathcal{F}|^{2}=\left|\sum_{j} \mathcal{A}_{j} \exp ^{i \mathbf{Q} \cdot \mathbf{r}_{j}}\right|^{2}
$$

$$
\propto\left|2 \imath \sin (2 \pi l z)\left(1-e^{22 \pi\left(\frac{h}{2}+\frac{k}{2}+\frac{l}{2}\right)}\right)\right|^{2},
$$

For ($1 / 21 / 2 \mathrm{l}$)

$$
\left|\mathcal{F}_{\left(\frac{1}{2} \frac{1}{2} l\right)}^{\mathrm{A}, \mathrm{~F}}\right|^{2} \propto\left|2 \imath \sin (2 \pi l z)\left(1+e^{\imath \pi l}\right)\right|^{2}
$$

Non-zero for even I peaks

$$
\mathcal{A}_{2}=\mathcal{A}_{3}=-\mathcal{A}_{1}=-\mathcal{A}_{4}
$$

How to determine the magnetic structure using REXMS
Step 2: Determine the relative phases (continued)

Compare Measured and Calculated Intensities

Apply corrections for:

- Absorptiion
- Geometrical terms in the Cross-section
$f_{E 1}^{X M R S}=-i F_{E 1}^{(1)}\left(\begin{array}{cc}0 & z_{1} \cos \theta+z_{3} \sin \theta \\ -z_{1} \cos \theta+z_{3} \sin \theta & -z_{2} \sin 2 \theta\end{array}\right)$
- Etc.

Candidate magnetic structure

How to determine the magnetic structure using REXMS
Step 3: Determine the directions of the magnetic moments

How to determine the magnetic structure using REXMS Step 3: Determine the directions of the magnetic moments

$\mathrm{Sr}_{3} \mathrm{Ir}_{2} \mathrm{O}_{7}$
$\Gamma_{2}[001]$
Γ_{6} [-110]
Γ_{8} [110]

Horizontal
geometry
π incident

Conclude that moments in $\mathrm{Sr}_{3} \mathrm{Ir}_{2} \mathrm{O}_{7}$ are purely oriented along the c direction

Moment reorientation transition driven by dimensionality

J.W. Kim et al. PRL (2012)

$$
\mathrm{Sr}_{3} \mathrm{Ir}_{2} \mathrm{O}_{7}
$$

Moment reorientation for $\mathrm{n}=\mathbf{2}$ driven by inter-layer pseudo-diploar couplings arising from strong spin-orbit coupling

What else can we learn from REXMS?

Conclude from branching ratio:

- Jeff=1/2 state is realised in $\mathrm{Sr}_{3} \mathrm{Ir}_{2} \mathrm{O}_{7}$
- Ambiguity in $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$ as moments lie in basal plane

The magnetic structure of $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$

Kim et al., Science (2009), Boseggia et al. PRL (2013) Boseggia et al. JPCM (2013)

- REXS experiments establish that Ir moments are AF coupled along [100] direction and lie in the a-b plane
- Key prediction of Jeff=1/2 model by Jackeli and Khaliullin is that the moments are canted to follow rigidly the rotation of the IrO_{6} octahedra

- Test the model by measuring reflections sensitive to canted AF component

The magnetic structure of $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$

Boseggia et al. JPCM (2013)

- A sublattice, dominant AF order along a axis: reflections of type (104n) or (0 $14 n+2$)
- B sublattice, canted AF order along b axis: reflections of type ($002 n+1$)
- Ratio of intensity of reflections can be used to determine canting angle

Locking of Ir magnetic moments to the correlated rotation of O octahedra in $\mathrm{Sr}_{2} \operatorname{IrO} 4$ Boseggia et al. JPCM (2013)

- Canting angle of magnetic moments of 12.2 (8) degrees is within error equal to the rotation angle 11.8 degrees.
- Confirms key prediction of Jeff=1/2 model by Jackeli and Khaliullin
- Can used measured canting angle in theory to place constraints on tetragonal crystal field
- Conclude that Jeff=1/2 state is realised in $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$

Novel Groundstates and Excitations in Iridates

Exquisite sensitivity of interactions for Jeff=1/2 state to lattice topology
Landmark paper by Jackeli and Khaliullin, PRL (2009)

Isotropic
Heisenberg Exchange

$$
J_{1} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

(b)

Anisotropic

Kitaev Model

Kitaev-Heisenberg
Model

$$
\mathcal{H}=J \mathbf{S}_{i} \cdot \mathbf{S}_{j}+K \mathrm{~S}_{i}^{\gamma} \mathrm{S}_{j}^{\gamma}
$$

Predicted to give rise to novel phases and excitations

