Resonant Elastic and Inelastic X-ray Scattering

Des McMorrow

London Centre for Nanotechnology, UCL

- Introduction
- Scattering cross-sections, refraction and absoprtion
- Resonant Elastic X-ray Scattering
 - Magnetic order: Novel MITs in 5d transition metal oxides
 - Mulitipolar order: Orbital ordering
- Resonant Inelastic X-ray Scattering
 - Magnons and crystal-field excitations: 5d transition metal oxides
- Summary

Elastic Scattering: groundstates and order

Inelastic Scattering: excitations

Dispersion Relations

Excitation spectrum, direct measure of interactions: strength, range, symmetry Quasi-particle spectroscopy

1D: Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain Mourigal et al. Nature Physics (2013)

3D: Quantum and classical criticality in a dimerized quantum antiferromagnet Merchant et al. Nature Physics (2014)

What do we measure in a scattering experiment?

Cross-section and scattering length

The Total Cross - section is obtained by integrating over all solid angle

$$\sigma = \int \left(\frac{d\sigma}{d\Omega}\right) d\Omega = 4\pi b^2$$

X-rays and Neutrons **Basic properties and Scattering lengths** Photon **Neutron** Charge: 0 0 1.675 x 10⁻²⁷ Kg Mass: 0 Spin: 1 $\frac{1}{2}$ -1.913 μ_N **Magnetic Moment:** 0 **Scattering lengths:** r₀=2.82 x 10⁻⁵ Å Sensitivity to b~r₀ Structure: (Short range nuclear forces) (E field photon with e) Sensitivity to $r_0(\hbar\omega/mc^2)$ $\mathbf{b}_{mag} \sim \mathbf{r}_0$ **Magnetism:** (E, H field photon with e and μ_B) $(\mu_n.B_{dipp})$ Resonant $r_0 = \frac{1}{4\pi\epsilon} \frac{e^2}{mc^2} = 2.82 \times 10^{-15} m$ 100 r₀! Scattering:

Source Brilliance (or spectral brightness)

Quite generally we expect

$$I_{SC} = \Phi_0 \times \Delta\Omega \times \text{Scattering efficiency factor} = \Phi_0 \times \Delta\Omega \times \left(\frac{d\sigma}{d\Omega}\right)$$

This defines the **Differential Cross - section**

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{\text{Number of particles scattered per second into detector}}{\text{Incident Flux } \times \text{Detector solid Angle}} = \frac{I_{sc}}{\Phi_0 \Delta \Omega}$$
Elastic

The Total Cross - section is obtained by integrating over all solid angle

$$\sigma = \int \left(\frac{d\sigma}{d\Omega}\right) d\Omega$$

This Partial Differential Cross - section

$$\left(\frac{d\sigma}{d\Omega dE_f}\right) = \frac{\text{Particles scattered per second into detector in energy window } dE_f}{\text{Incident Flux } \times \text{Detector solid Angle} \times dE_f}$$

Scattering kinematics

• Momentum transfer

$$\hbar \mathbf{Q} = \hbar \left(\mathbf{k}_i - \mathbf{k}_f \right)$$

• Energy transfer

$$\hbar\omega = E_i - E_f$$

- Scattering event independent variables: (Q,ω)
 - Elastic Scattering $\hbar\omega = 0$ Crystallography
 Inelastic Scattering $\hbar\omega \neq 0$ Spectroscopy
- FT conjugate variables
 - \circ Q ~ 2 π /(length)
 - \circ ħω ~ 2πħ/(time)

Non-resonant charge scattering from unbound electrons Thomson cross-section

Classical calculation of the electric field reradiated from a free electron

$$\mathbf{E}_{rad} \propto \frac{-e}{R} \mathbf{a}_X(t') \sin \Psi \equiv \frac{e}{R} \mathbf{a}_X(t') \left(\hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{\epsilon}}'\right)$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Th}} = r_0^2 \left|\hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{\epsilon}}'\right|^2$$

Single atom

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{\text{Th.}}^{atom} = r_0^2 \left[f^0(\mathbf{Q}) \right]^2 \left| \hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{\epsilon}}' \right|^2$$

$$f^0(\mathbf{Q}) = \int \rho(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}} d\mathbf{r} \qquad \begin{array}{c} \text{Atomic} \\ \text{form} \\ \text{form} \\ \text{factor} \end{array}$$

$$\mathbf{Q} = \mathbf{k} - \mathbf{k}'$$

Wave vector transfer

X-ray Resonant Scattering from bound electrons

Dispersion corrections

From electrons bound in atoms expect:

$$f(\mathbf{Q},\omega) = f^{0}(\mathbf{Q}) + f'(\omega) + i f''(\omega)$$

Forced, damped oscillator model

Relationship between scattering and refraction

Electric field $\mathbf{E}(t) \Rightarrow \mathbf{P}(t)$ (electric dipole/V)

$$\mathbf{P}(t) = \varepsilon_0 \chi \mathbf{E}(t) = (\varepsilon - \varepsilon_0) \mathbf{E}(t)$$

where

$$P(t) = \frac{-Nex(t)}{V} = -\rho ex(t) = -\rho e \left(-\frac{e}{m}\right) \frac{E_0 e^{-i\omega t}}{\left(\omega_0^2 - \omega^2 - i\omega\Gamma\right)}$$
$$\Rightarrow \frac{P(t)}{E(t)} = \varepsilon - \varepsilon_0 = \left(\frac{e^2 \rho}{m}\right) \frac{1}{\left(\omega_0^2 - \omega^2 - i\omega\Gamma\right)}$$

The refractive index is defined by

$$n^{2} = \frac{c^{2}}{v^{2}} = \frac{\varepsilon}{\varepsilon_{0}}$$
$$\Rightarrow n^{2} = 1 + \left(\frac{e^{2}\rho}{\varepsilon_{0}m}\right) \frac{1}{\left(\omega_{0}^{2} - \omega^{2} - i\omega\Gamma\right)}$$

For X-rays, $\omega \gg \omega_0 \gg \Gamma$

$$n \approx 1 - \frac{1}{2} \left(\frac{e^2 \rho}{\varepsilon_0 m \omega^2} \right) = 1 - \frac{2\pi \rho r_0}{k^2}$$

$$\delta = \frac{2\pi\rho_a r_0 \left(f^0(0) + f'(\hbar\omega) \right)}{k^2} \qquad \beta = -\frac{2\pi\rho_a r_0 f''(\hbar\omega)}{k^2}$$

Relationship between scattering and refraction

Scattering and refraction: different ways of understanding the same phenomena

X-ray absorption edges

Relationship scattering, refraction and absorption

$$\int_{a}^{b} = -\left(\frac{1}{2\pi\rho_{a}r_{0}}\right) + \frac{1}{2k} = -\left(\frac{1}{4\pi r_{0}}\right) + \frac{1}{2k}$$
Absorption is proportional to the imaginary part of the forward scattering amplitude (Optical Theorem)

Theoretical Framework

Cross-sections and the interaction Hamiltonian

Task is to determine the differential cross-section:

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{\text{Number of particles scattered per second into detector}}{\text{Incident Flux } \times \text{Detector solid Angle}}$$
$$= \frac{W}{\Phi_0(\Delta\Omega)}$$

The transition rate probability W to 2nd order

$$W = \frac{2\pi}{\hbar} \left| \left\langle f \left| \boldsymbol{H}_{I} \right| i \right\rangle + \sum_{n} \left| \frac{\langle f \left| \boldsymbol{H}_{I} \right| n \rangle \langle n \left| \boldsymbol{H}_{I} \right| i \rangle}{E_{i} - E_{n}} \right|^{2} \rho \left(E_{f} \right) \right|$$

Interaction Hamiltonian H_I : describes interaction between radiation and target

Density of final states

$$\rho\left(E_{f}\right)dE_{f} = \rho\left(\mathbf{k}_{f}\right)d\mathbf{k}_{f}$$

Box normalisation implies

$$\rho\left(E_{f}\right)dE_{f} = \rho\left(k_{f}\right)k_{f}^{2}\Delta\Omega dk_{f}$$

$$\therefore \quad \rho\left(E_{f}\right) = \frac{V}{(2\pi)^{3}}k_{f}^{2}\Delta\Omega \frac{dk_{f}}{dE_{f}}$$

To first order

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{1}{\Phi_0} \frac{2\pi}{\hbar} \left| \left\langle f \left| \boldsymbol{H}_{\boldsymbol{I}} \right| i \right\rangle \right|^2 \frac{V}{(2\pi)^3} \mathbf{k}_f^2 \frac{d\mathbf{k}_f}{dE_f}$$

Valid for neutrons and X-rays

Non-resonant charge scattering from unbound electrons Quantum mechanical calculation

Hamiltonian of single electron in an electromagnetic field:

 $\mathcal{H}_0 = \frac{p^2}{2m} + V \qquad \mathbf{p} \to \mathbf{p} + e\mathbf{A} \qquad \mathbf{B} = \nabla \times \mathbf{A} \quad \text{Canonical momentum}$ $\mathcal{H}_0 \to \mathcal{H}_0 + \mathcal{H}_I \qquad \mathcal{H}_I = \frac{e\mathbf{A} \cdot \mathbf{p}}{m} + \frac{e^2 \mathbf{A}^2}{2m}$

Quantization of the electromagnetic field vector potential:

$$\mathbf{A}(\mathbf{r},t) = \sum_{u} \sum_{\mathbf{k}} \sqrt{\frac{\hbar}{2\epsilon_0 \omega V}} \hat{\boldsymbol{\epsilon}}_u \left[a_{u,\mathbf{k}} e^{i(\mathbf{k}\cdot\boldsymbol{r}-\omega t)} + a_{u,\mathbf{k}}^{\dagger} e^{-i(\mathbf{k}\cdot\boldsymbol{r}-\omega t)} \right]$$
$$a_{u,\mathbf{k}}|n\rangle = \sqrt{n}|n-1\rangle \qquad a_{u,\mathbf{k}}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \quad \rightarrow \mathcal{E}_{\mathrm{rad}} = \hbar\omega (a_{u,\mathbf{k}}^{\dagger}a_{u,\mathbf{k}}+1/2)$$

1st order process: destroy photon from incident beam, create one in scattered beam

$$W = \frac{2\pi}{\hbar} |\langle f | \mathcal{H}_{I} | i \rangle|^{2} \rho(E_{f}) = \frac{2\pi}{\hbar} |\langle f | \frac{e^{2} A^{2}}{2m} | i \rangle|^{2} \rho(E_{f})$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Th.}} = \frac{W}{\Phi_{0} \Delta \Omega} = r_{0}^{2} |\hat{\epsilon}_{f} \cdot \hat{\epsilon}_{i}|^{2}$$

$$\underbrace{\frac{\hat{\epsilon}_{\perp} = \sigma}{\Phi_{0} \Delta \Omega} = r_{0}^{2} |\hat{\epsilon}_{f} \cdot \hat{\epsilon}_{i}|^{2}}_{\text{Thomson scattering}}$$

$$\underbrace{\frac{\hat{\epsilon}_{\perp} = \sigma}{\Phi_{0} \Delta \Omega} = r_{0}^{2} |\hat{\epsilon}_{f} \cdot \hat{\epsilon}_{i}|^{2}}_{\text{Thomson scattering}}$$

X-ray Scattering

Non-resonant elastic magnetic

Single spin in electromagnetic field: identify leading order magnetic term

1st order scattering processes:

 $\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{\text{Th.}} = r_0^2 \left| \hat{\boldsymbol{\epsilon}}_f \cdot \hat{\boldsymbol{\epsilon}}_i \right|^2 \quad \left(\frac{d\sigma}{d\Omega} \right)_{\text{Mag.}}^{\text{1st order}} = r_0^2 \left(\frac{\hbar\omega}{mc^2} \right)^2 \left| \hat{\boldsymbol{\epsilon}}_f \times \hat{\boldsymbol{\epsilon}}_i \right|^2 \langle \mathbf{s} \rangle^2$

- Non-resonant magnetic scattering is weaker than charge by a factor of 0.0001 at 10 keV
- Non-resonant magnetic scattering (1st order) is proportional to <s>² => Magnetic structures
- Magnetic scattering has a distinctive dependence on photon polarization

X-ray Magnetic Scattering

1st Non-resonant X-ray Magnetic Scattering

NiO, de Bergevin and Brunel (1972)

Tube source: Counts per 4 hours!

1st NREMXS Synchrotron Studies

Holmium, Gibbs et al. (1985)

1st REXMS

Nickel, Namikawa (1985)

Resonant X-ray magnetic scattering (RXMS)

Large enhancement of XRS at L edges of Holmium

Gibbs, Harshman, Isaacs, McWhan, Mills and Vettier (1988)

•100 fold increase when tuned to the L_3 edge

•Two distinct types of transition are observed: one above and one below the edge

• Higher order satellites up to 4th order

•Polarization state changes with order 1^+ : rotated, $\sigma \rightarrow \pi'$ 1^- : unrotated, , $\sigma \rightarrow \sigma'$ •Signal disappears at T

 $\bullet Signal \ disappears \ at \ T_{_N}$

Peaks arise from transitions to bound states
 1⁺: 2p -> 5d Dipole
 1⁻: 2p -> 4f Quadrupole

RXMS is Born: A New Element and Electron Shell Sensitive Probe! Resonant inelastic X-ray scattering studies of elementary excitations Ament et al. Rev. Mod. Phys. 83 705 (2011)

Resonant X-ray scattering

Theoretical Framework

$$w = \frac{2\pi}{\hbar} \sum_{\mathbf{f}} |\langle \mathbf{f} | \mathcal{H}' | g \rangle + \sum_{n} \frac{\langle \mathbf{f} | \mathcal{H}' | n \rangle \langle \mathbf{n} | \mathcal{H}' | g \rangle}{E_g - E_n} |^2 \delta(E_{\mathbf{f}} - E_g)$$
$$E_g = E_g + \hbar \omega_{\mathbf{k}} \qquad E_{\mathbf{f}} = E_f + \hbar \omega_{\mathbf{k}'}$$

When $E_g \sim E_n$ second term dominates. The interaction Hamiltonian to leading order is then $\mathcal{H}' = \frac{e\mathbf{A} \cdot \mathbf{p}}{\mathbf{P}}$

The Kramers-Heisenberg RIXS cross-section is:

$$I(\omega, \mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}, \omega_{\mathbf{k}'}) = r_0^2 m^2 \omega_{\mathbf{k}}^4 \sum_{\mathbf{f}} |\mathcal{F}_{fg}(\mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}, \omega_{\mathbf{k}'})|^2 \delta(E_g - E_f + \hbar\omega)$$

RIXS scattering amplitude:

$$\mathcal{F}_{fg}(\mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}, \omega_{\mathbf{k}'}) = \sum_{n} \frac{\langle f | \mathcal{D}' | n \rangle \langle n | \mathcal{D} | g \rangle}{E_{g} + \hbar \omega_{\mathbf{k}} - E_{n} - i\Gamma_{n}}$$
Inela

Dipole transition operator
$$\mathcal{D} = \boldsymbol{\epsilon} \cdot \mathbf{D}$$
 $\langle n | \mathbf{D} | \mathbf{g} \rangle = \sum_{i=1}^{N} e^{i \mathbf{k} \cdot \mathbf{R}_{i}} \langle n | \mathbf{r} | \mathbf{g} \rangle$

nelastic

REXS scattering amplitude:

$$\mathcal{F}_{\rm gg}(\boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}) = \sum_{n} \frac{\langle \mathbf{g} | \mathcal{D}' | n \rangle \langle n | \mathcal{D} | \mathbf{g} \rangle}{E_{\rm g} + \hbar \omega_{\mathbf{k}} - E_{n} - i\Gamma_{n}}$$
Elastic

Resonant elastic magnetic X-ray scattering

Scattering length for dipolar transitions:

Hill and McMorrow 1996

$$\begin{aligned} \mathcal{F}_{E1} &= \frac{1}{2} (\boldsymbol{\epsilon}' \cdot \boldsymbol{\epsilon}) (F_{1,1} + F_{1,-1}) - \frac{i}{2} (\boldsymbol{\epsilon}' \times \boldsymbol{\epsilon}) \cdot \hat{\mathbf{z}} (F_{1,1} - F_{1,-1}) \\ & \text{Dispersion corrections} \\ &+ (\boldsymbol{\epsilon}' \cdot \hat{\mathbf{z}}) (\boldsymbol{\epsilon} \cdot \hat{\mathbf{z}}) (F_{1,0} - \frac{1}{2} F_{1,1} + \frac{1}{2} F_{1,-1}) \end{aligned} \qquad \begin{array}{c} \mathbf{REMXS+XMCD} \\ F_{l,m} \text{ resonant amplitudes} \end{aligned}$$

REMXS+XMLD+Anisotropic Tensor Scattering (ATS)

Expressed in orthogonal photon polarization states:

$$\mathcal{F}_{E1} = F_{E1}^{0} \begin{pmatrix} 1 & 0 \\ 0 & \cos 2\theta \end{pmatrix} - iF_{E1}^{1} \begin{pmatrix} 0 & z_{1}\cos\theta + z_{3}\sin\theta \\ -z_{1}\cos\theta + z_{3}\sin\theta & -z_{2}\sin 2\theta \end{pmatrix}$$
$$+ F_{E1}^{2} \begin{pmatrix} z_{2}^{2} & -z_{2}(z_{1}\cos\theta - z_{3}\sin\theta) \\ z_{2}(z_{1}\cos\theta + z_{3}\sin\theta) & -\cos^{2}\theta(z_{1}^{2}\tan^{2}\theta + z_{3}^{2}) \end{pmatrix}$$

M. Altarelli: Resonant X-ray Scattering: A Theoretical Introduction, Lect. Notes Phys. 697, 201-242 (2006) www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

What controls the REXMS scattering length?

The scattering length depends on terms of the form

$$\langle n | \mathbf{r} | g \rangle \propto \int_{0}^{\infty} r^{2} dr \underbrace{R_{nl}(r)}_{electrons} r \underbrace{R_{n'l'}(r)}_{valence}$$

Large resonance are therefore expected when there is a large overalp between the core and valence electron radial wavefunctions.

Transition Metals 3d	L edges, 2p->3d c. 1 keV	Strong	
Transition Metals 5d	L edges, 2p->5d c. 10 keV	medium	10 ⁵
Rare-Earths 4f,5d	L edges, 2p->5d c. 10 keV	Weak	K-edge L-edges M-edges
Rare-Earths 4f,5d	M edges, 3d->4f c. 1 keV	Strong	10 ² soft
Actinides 5f	M edges, 3d->5f c. 3 keV	Strong	Atomic Number Z

Giant resonances at the rare-earth $M_{4,5}$ edges (3p->4f)

J.M. Soriano, PhD thesis, University of Amsterdam

Experimental considerations

High flux beamlineTunable photon energy, 1-15 keV

•Well defined and variable incident polarization

- Versatile diffractometer
- Azimuthal degree of freedom
- Polarization analysis

Resonant X-ray Studies of 5d Oxides

5d Oxides

- Strong Spin-Orbit Coupling Limit
- Spatially extended d orbitals
- Significant correlation energy
- Mott-Hubbard physics in strong SOC limit
 - Novel MITs
 - Wavefunctions formed from entanglement of S and L
 - Interaction Hamiltonian takes on unique character (bond directional "Kitaev")
 - Predictions for novel quantum groundstates and excitations

Overview:

- Correlated electron systems in the strong spin-orbit coupling limit
- Perovskite iridates and the realisation of the J_{eff}=1/2 state
- Evidence for Kitaev physics in honeycomb iridates
- Slater metal-insulator transitions (MITs) in osmates

Acknowledgements

Stefano Boseggia	UCL	Andrew Boothroyd	Oxford
James Vale	UCL	Dharmalingam Prabhakaran	Oxford
Christian Donnerer	UCL	Andy Princep	Oxford
Zhuo Feng	UCL	Marein Rahn	Oxford
Davide Pincini	UCL/DLS		
		S. Nishimoto	Dresden
Steve Collins	Diamond	J. van den Brink	Dresden
		N. Bogdanov	Dresden
Henrik Ronnow	EPFL		
		Masaaki Isobe	Tsukuba
Marco Moretti Sala	ESRF	Y. G. Shi	Tsukuba
		K. Yamaura	Tsukuba
Stuart Calder	ORNL	Y. S. Sun	Tsukuba
Andy Christianson	ORNL	Y. Tsujimoto	Tsukuba
John Hill	BNL	J. Yamaura	Tokyo
		Z. Hiroi	Tokyo