

RIXS and XMCD for the study of high Tc superconductors

Giacomo Ghiringhelli

Considic

Dipartimento di Fisica - Politecnico di Milano

delle Ricerche

CNR - SPIN giacomo.ghiringhelli@polimi.it

18 September, 2015

Summary

- The case of cuprate high Tc superconductorsXMCD of cuprates
- \checkmark Cu L_3 RIXS and spin excitations in cuprates

Giacomo Ghiringhelli 2015

POTTECNICO DI MITANO

High Tc superconductors

High Tc superconducting cuprates

Giacomo Ghiringhelli 2015

Spin excitations in HTcS: undoped AF

The mysteries of HT_cS

Giacomo Ghiringhelli 2015

201 I FICINICO DI MILANO

Spin excitations in HTcS: doped SC

J.M. Tranquada, in *Handbook of High-Temperature Superconductivity: Theory and*

Experiment, J.R. Schrieffer and J.S. Brooks, eds., Springer, 2007,

V. Hinkov et al, Eur. Phys. J. Special Topics 188, 113–129 (2010) Giacomo Ghiringhelli 2015

Core level binding energies and edges

XAS of 3d transition metals

L₃ XAS and multiplets

Giacomo Ghiringhelli 2015

L₃ XAS and valence

Source: M. Grioni *et al* PRB **45**, 3309 (1992)

Source: M. Finazzi et al PRB 61, 4629 (2000)

Crystal field

Linear polarization of x-rays and orbital orientation

3d hole symmetry in cuprates

Weak ferromagnetism of cuprates

XMCD of cuprates

G. M. De Luca, G. Ghiringhelli, M. Moretti Sala, S. Di Matteo, M.W. Haverkort, H. Berger, V. Bisogni, J. C. Cezar, N. B. Brookes, and M. Salluzzo, Phys. Rev. B 82, 214504 (2010)

Proximity effect: FM disturbs SC

G.M. De Luca, G. Ghiringhelli, C.A. Perroni, V. Cataudella, F. Chiarella, C. Cantoni, A.R. Lupini, N.B. Brookes, M. Huijben, G. Koster, G. Rijnders & M. Salluzzo, Nat. Comm. 5, 5626 (2014)

Resonant Inelastic X-ray Scattering

L₃ RIXS

dd excitations in Cu²⁺ systems

Cu L₃ RIXS of cuprates: mainly *dd* excitations

Giacomo Ghiringhelli 2015

Cu L₃ edge: CuO, La₂CuO₄, Malachite

Cu²⁺ in square approximately planar coordination

Cu-O distances: CuO 1.7 – 2-2 Ang LCO 1.9 – 2.4 Ang Malachite 1.9 – 2.6 Ang

> Different Cu²⁺ coordination, symmetry, hybridization

Different dd excitations

G. Ghiringhelli, A. Piazzalunga, X. Wang, A. Bendounan, H. Berger, F. Bottegoni, N. Christensen, C. Dallera, M. Grioni, J.-C. Grivel, M. Moretti Sala, L. Patthey, J. Schlappa, T. Schmitt, V. Strocov, and L. Braicovich, Eur.Phys. J. Special topics **169**, 199 (2009)

What about the "quasi-elastic" spectral features?

Phonons: up to 90meV

Magnons (2J at BZB): up to 300 meV ($J_{eff} \approx 140$ meV)

Multi mangons...

RIXS: Experimental conditions

Wavevector of particles used in inelastic scattering

Cu L₃ resonance:

- $E_0 = 930 \text{ eV}$
- q_{max} = 0.86 Ang⁻¹
- confined inside a region around Γ
- 2p core hole: spin-orbit interaction

INS

- E resolution: 120-240 meV
- q resolution: 0.005 rlu
- ¹/₂ 1 hour per spectrum

Polarization dep. of Cu L₃ RIXS intensity

Polarization dependent cross-sections

M. Hashimoto, L.Braicovich, M. Minola, GG et al. unpublished helli 2015

First demonstration: La₂CuO₄

Ghiringhelli PRL 104 077002 (2010) Giacomo Ghiringhelli 2015

La₂CuO₄, RIXS vs INS

L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli PRL **104** 077002 (2010)

M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J.N. Hancock, D. van der Marel, T. Schmitt, V.N. Strocov, L.J.P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H. M. Rønnow, and M. Grioni. Phys. Rev. Lett. **105**, 157006 (2010)

Magnons at Fe L₃ edge in BaFe₂As₂

Ke-Jin Zhou, Yao-Bo Huang, Claude Monney, Xi Dai, Vladimir N. Strocov, Nan-Lin Wang, Zhi-Guo Chen, Chenglin Zhang, Pengcheng Dai, Luc Patthey, Jeroen van den Brink, Hong Ding & Thorsten Schmitt, Nature Comm. **4**, 1470 (2013)

Giacomo Ghiringhelli 2015

Magnetic and orbital excitations in Sr₂IrO₄

Giacomo Ghiringhelli 2015

Superconductors: LSCO, YBCO and NdBCO

LSCO & NdBCO: 100 nm films on STO. YBCO: detwinned single crystals

Dispersing magnetic excitations are almost as strong in SC as in the AF parent compounds: they can be involved in Cooper pairing

L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli PRL **104** 077002 (2010)
M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. Moretti Sala, V. Hinkov, M.W. Haverkort, M. Minola, M. Bakr, K. J. Zhou, S. Blanco-Canosa, C. Monney, Y. T. Song, G. L. Sun, C. T. Lin, G. M. De Luca, M. Salluzzo, G. Khaliullin, T. Schmitt, L. Braicovich and B. Keimer, Nat. Phys. **7**, 725 (2011) Giacomo Ghiringhelli 2015

YBCO: doping dependence of χ''

Imaginary part of the spin susceptibility $\chi''(Q;w)$ resulting from exact diagonalization of the t–J model with J/t=0.3 on small cluster. (G. Khaliullin)

а

cluster (normalized) for 7 accessible non-equivalent Q vectors. (G. Khaliullin)

Peristent magnetic excits in overdoped cuprates

M. P. M. Dean,, . G. Dellea, R. S. Springell, F. Yakhou-Harris, K. Kummer, N. B. Brookes, X. Liu, Y.-J. Sun, J. Strle, T. Schmitt, L. Braicovich, G. Ghiringhelli, I. Bozovic, and J. P. Hill, Nat. Mater. **12**, 1019 (2013)

M. Le Tacon, M. Minola, D. C. Peets, M. Moretti Sala, S. Blanco-Canosa, V. Hinkov, R. Liang, D. A. Bonn, W. N. Hardy, C. T. Lin, T. Schmitt, L. Braicovich, G. Ghiringhelli, and B. Keimer, Phys. Rev. B 88, 020501 (2013)

Spin excitations in e-doped SC

K. Ishii, M. Fujita, T. Sasaki, M. Minola, G. Dellea, C. Mazzoli, K. Kummer, G. Ghiringhelli, L. Braicovich, T. Tohyama, K. Tsutsumi, K. Sato, R. Kajimoto, K. Ikeuchi, K. Yamada, M. Yoshida, M. Kurooka & J. Mizuki, Nat. Comm. **5**, 3714 (2014)

Exceptional sensitivity of RIXS

Giacomo Ghiringhelli 2015 🛛 🔤

Small effect of thickness on J

ENERGY RESOLUTION: progress in the last 20 years

Combined resolving power has increased by a factor 30

Giacomo Ghiringhelli 2015

Soft x-ray RIXS instrumentation

High resolution mono, small x-ray spot on the sample Grating spectrometer: optimized efficiency, high resolution

The main limiting factor is INTENSITY!!!!

From AXES (ESRF, ID08) to SAXES (SLS, ADRESS)

Since 1994: AXES at beam line ID08 of the ESRF L = 2.2 mDesign: $E/\Delta E = 2,000 \text{ at Cu } L_3$ (930 eV) 2010: $E/\Delta E = 5,000 \text{ at Cu } L_3$

C. Dallera *et al.* J. Synchrotron Radiat. **3**, 231 (1996)
G. Ghiringhelli *et al.*, Rev. Sci. Instrum. **69**, 1610 (1998)
M. Dinardo *et al.*, Nucl, Instrum. Meth A **570**, 176 (2007)

Giacomo Ghiringhelli 2015

Since 2007: SAXES at beam line ADRESS of the SLS L = 5.0 mDesign: $E/\Delta E = 12,000 \text{ at Cu } L_3$ 2011: $E/\Delta E = 11,000 \text{ at Cu } L_3$

G. Ghiringhelli, et al Rev. Sci. Instrum. **77**, 113108 (2006) V. Strocov, T. Schmitt, L. Patthey et al, J. Synch. Rad., 17, 631 (2010).

2011 FUNICO DI MILANO

New ID32 at the ESRF

<u>ERIXS</u> spectrometer at the new ID32

FEATURES:

- $E/\Delta E$ > 20,000 below 1000 eV from day one (50 meV at Cu L₃) and $E/\Delta E$ > 30,000 ultimate
- continous variation of scattering angle,
- full control of sample orientation (almost a diffractometer),
- measurement the linear polarization of the scattered photons (when needed)
- optionally in high magnetic field
- flexible sample environment: possibility of liquid and gas phase experiments

ESRF Upgrade program, N.B. Brookes, F. Yakhou, GG et al

Commissioning:

Beamline: started operations in Dec 2014 ERIXS: first experiment 1st July 2015 Full ERIXS user operation – fall 2015

12m

POLITECNICO MILANO 1863

ERIXS and the other HR soft-RIXS projects

SR FACILITY	E/ Δ E (combined)	Length	YEAR	NOTES
ESRF, ERIXS@ID32	30,000	11 m	2015	With Polarimeter
DIAMOND, IXS	40,000	14 m	2017	
MAX IV, Veritas	40,000	?	2017	Rowland Geometry
NSLS II, Centurion@SIX	70,000	15 m	2017	Hettrick-Underwood, 50 nrad slope error, 1 um spot on sample
European XFEL	20,000	5 m	2017	For non linear RIXS and pump- probe time-resolved RIXS

Bibliography

REVIEWS OF MODERN PHYSICS, VOLUME 83, APRIL-JUNE 2011

Resonant inelastic x-ray scattering studies of elementary excitations

Luuk J. P. Ament

Institute-Lorentz for Theoretical Physics, Universiteit Leiden, 2300 RA Leiden, The Netherlands

Michel van Veenendaal

Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA and Department of Physics, Northern Illinois University, De Kalb, Illinois 60115, USA

Thomas P. Devereaux

Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

John P. Hill

Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA

Jeroen van den Brink Institute for Theoretical Solid State Physics, IFW Dresden, 01069 Dresden, Germany

Insights into the high temperature superconducting cuprates from resonant inelastic X-ray scattering M.P.M. Dean Journal of Magnetism and Magnetic Materials Volume 376, 15 February 2015, Pages 3–13

