What do we see with neutrons in magnetism ?

L.C. Chapon
Institut Laue-Langevin, Grenoble, France

The neutron

- Non-charged particle $m_{N}=1.67 .10^{-27} \mathrm{~kg}$
- Total angular momemtum («nuclear spin ») $\mid=1 / 2$
- The magnetic moment is extremely small compared to the electron.
-> The interaction potential is small, Born approximation is valid

$$
\begin{aligned}
& \mu=\gamma \mu_{N} \sigma \text { with } \gamma=-1.913 \\
& \mu_{N}=\frac{e \hbar}{2 m_{p}}=5.0510^{-27} \mathrm{~J} . \mathrm{T}^{-1} \\
& \mu_{B}=\frac{e \hbar}{2 m_{e}}=9.2810^{-24} \mathrm{~J} . \mathrm{T}^{-1}
\end{aligned}
$$

Production : Nuclear fission

ILL, Grenoble, 58MW

Production : spallation

Fast proton

Heavy nucleus (Ta, U, Hg)

Fast Neutrons are slowed by collisions in a moderator $\left(\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}\right)$

Production : spallation

Neutrons slowed down by « moderators» :
$-\mathrm{H}_{2}$

- CH_{4}
- $\mathrm{H}_{2} \mathrm{O}$

What do we see with neutrons in magnetism?

The Nobel Prize in Physics 1994

Neutrons reveal structure and dynamics
shial malo wor of theste

 arowi Lue ti plows dille dinven

 nowned in mevik manrit awer Suen wiviciolly mentik haco - moveralfinted indilign

(2x-2

\square

KINGI

\qquad

 Mhiniper for shatior of corelorand maitur

What do we see with neutrons in magnetism ?

Static spin arrangements

Local or collective excitations

Outline

- Reminder of scattering theory, neutron nuclear scattering
- Magnetic scattering theory:
- Spin contribution
- Orbital contribution
- Density matrix formalism, non-polarized and polarized cases
- Magnetic form factors
- Probing different magnetic states:
- Magnetic Bragg scattering: Long-range ordered structures
- Diffuse scattering, short-range correlations
- Small angle scattering, skyrmions
- Inelastic scattering, crystal field excitations, magnons

Scattering by a potential $V(r)$

$$
\overbrace{d n}^{n \cdot s^{-1}}=\overbrace{\Phi}^{n \cdot c m^{-2}} \cdot \overbrace{d \Omega}^{s^{-1}} \overbrace{\sigma}^{\frac{n \cdot u}{u}}(\theta, \phi)
$$

- σ has the dimension of a surface
- Usually in barns=10-24 cm^{2}

Differential cross section, Fermi's Golden rule

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sum_{\lambda} p_{\lambda} \sum_{\lambda^{\prime}}\left(\frac{\stackrel{\text { da}}{ }^{2} \sigma}{d \Omega d E^{\prime}}\right)_{\lambda \rightarrow \lambda^{\prime}}
$$

$$
\left.=\frac{k^{\prime}}{k}\left(\frac{m}{2 \pi \hbar^{2}}\right)^{2} \sum_{\lambda} p_{\lambda} \sum_{\lambda^{\prime}}\left|\left\langle k^{\prime} \lambda^{\prime}\right| V\right| k \lambda\right\rangle\left.\right|^{2} \delta\left(E_{\lambda}-E_{\lambda^{\prime}}+E-E^{\prime}\right)
$$

Born approximation

- In the quantum mechanical treatment of scattering by a central potential, the stationary states $\varphi(r)$ verify:

$$
\left[\Delta+k^{2}\right] \varphi(\boldsymbol{r})=\frac{2 \mu}{\hbar^{2}} V(\boldsymbol{r}) \varphi(\boldsymbol{r})
$$

-In the integral equation of scattering, the stationary wave-function is written :

$$
V_{k}^{s c a t}(\boldsymbol{r})=e^{i \boldsymbol{k}_{i} \cdot \boldsymbol{r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) V\left(\boldsymbol{r}^{\prime}\right) V_{k}^{s c a t}\left(\boldsymbol{r}^{\prime}\right) d^{3} r^{\prime}
$$

-One can expend iteratively this expression (Born expansion).
If the potential is weak, one can limit the expansion to the first term, this is the first
Born approximation. In this case the scattering cross section (amplitude) is related to the Fourier transform of the potential function.

$$
\sigma_{k}(\theta, \phi)=\frac{m^{2}}{4 \pi^{2} \hbar^{2}}\left|\int V(\boldsymbol{r}) e^{i \boldsymbol{O r}} d^{3} r\right|^{2}
$$

The phase problem

Loss of information in a physical measurement

$$
F(u, v)=M(u, v) e^{(i \phi)}
$$

$F(u, v)=\frac{1}{N_{x} N_{y}} \sum_{x} \sum_{y} f(x, y) e^{\left(-2 \pi i\left(\frac{x u}{N_{x}}+\frac{y v}{N_{y}}\right)\right)}$

James Chadwick

$$
f^{\prime}(x, y)=\frac{1}{N_{u} N_{v}} \sum_{u} \sum_{v} M(u, v) e^{\left(2 \pi i\left(\frac{x u}{N}+\frac{y V}{N}\right)\right)}
$$

Nuclear scattering

- Nuclear scattering mediated by the strong force, extremely short range ($\mathrm{fm}=1 \cdot 10^{-15} \mathrm{~m}$).
- Neutron wavelength much $\operatorname{larger}\left(\AA=1.10^{-10} \mathrm{~m}\right)$, can not probe internal nuclear structure: scattering is isotropic.
- The interaction between the neutron and the atomic nucleus is represented by the Fermi pseudo-potential, a scalar field that is zero except very close to the nucleus (δ function).

$$
V(\vec{r})=\frac{2 \pi \hbar^{2}}{m_{r}} a \delta^{3}(\vec{r})
$$

Scattering lengths

- Typically a few fm

H	Li	C	O	S	Mn	Zr	Cs
	\cdot	\bullet	0	0	0		

X-ray vs Neutron

Fig. a: Neutron radiography of a camera

Fig. b: Radiographic image of a camera made X-rays

Also: - b depends on the isotope

- b depends on the spin states of the neutron and nucleus

Compound nucleus $1+1 / 2$

$$
\begin{gathered}
b_{c o h}=\bar{b} \\
b_{i n c}=\sqrt{b^{2}-\bar{b}^{2}}
\end{gathered}
$$

b^{-}

Compound nucleus I-1/2

Magnetic cross section

For elastic neutron magnetic scattering, one needs to evaluate (in the Born approximation), the cross section:

$$
\left.\left(\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right)_{\sigma, \lambda \rightarrow \sigma^{\prime}, \lambda^{\prime}}=\frac{k^{\prime}}{k}\left(\frac{m}{2 \pi \hbar}\right)^{2}\left|\left\langle\boldsymbol{k}^{\prime}, \boldsymbol{\sigma}^{\prime}\right| V_{m}\right| \boldsymbol{k}, \boldsymbol{\sigma}\right)\left.\right|^{2} \delta\left(E_{\lambda}-E_{\lambda^{\prime}}+\hbar \omega\right)
$$

$\rho \sigma$ initial spin-state of the neutron
$-\sigma^{\prime}$ final spin-state of the neutron

- \mathbf{k} incident wave-vector
k' scattered wave-vector
- Q momentum transfer
- V_{m} magnetic interaction potential

Magnetic interaction (spin)

Considering a single unpaired electron:

$$
\begin{aligned}
& \boldsymbol{A}(\boldsymbol{R})=\frac{\mu_{0}}{4 \pi} \frac{\mu_{\boldsymbol{e}} \times \hat{\boldsymbol{R}}}{R^{2}} \\
& \boldsymbol{B}=\nabla \times \boldsymbol{A} \\
& V=-\boldsymbol{\mu} \cdot \boldsymbol{B}
\end{aligned}
$$

$V=-\gamma \mu_{N} 2 \mu_{B} \frac{\mu_{0}}{4 \pi} \sigma . \nabla \times \frac{\boldsymbol{s} \times \hat{\boldsymbol{R}}}{R^{2}}$

$$
V_{S}=\gamma \mu_{N} 2 \mu_{B} \frac{\mu_{0}}{4 \pi} \boldsymbol{\sigma} . \nabla \times \boldsymbol{s} \times \nabla \frac{1}{|R|}=\text { cste. } \boldsymbol{\sigma} \boldsymbol{W}_{\boldsymbol{s}}
$$

Introduction to the Theory of Thermal Neutron Scattering
G. L. Squires, Dover Publications

Magnetic interaction (spin)

$$
\begin{aligned}
& \nabla \times \boldsymbol{s} \times \nabla \frac{1}{|R|}=\frac{1}{2 \pi^{2}} \int \frac{1}{\boldsymbol{x}^{2}} \nabla \times \boldsymbol{s} \times \nabla e^{i \boldsymbol{x} \boldsymbol{R}} d \boldsymbol{x}=\frac{1}{2 \pi^{2}} \int(\hat{\boldsymbol{X}} \times \boldsymbol{s} \times \hat{\boldsymbol{X}}) e^{i \boldsymbol{x} \boldsymbol{R}} d \boldsymbol{x} \\
& \langle\boldsymbol{k}| \nabla \times \boldsymbol{s} \times \nabla \frac{1}{|R|}|\boldsymbol{k}\rangle=\frac{1}{2 \pi^{2}} \int e^{i \boldsymbol{Q} r} \int(\hat{x} \times \boldsymbol{s} \times \hat{x}) e^{i x \boldsymbol{R}} d \boldsymbol{x} d \boldsymbol{r}=4 \pi \hat{\boldsymbol{Q}} \times \boldsymbol{s} \times \hat{\boldsymbol{Q}} \cdot e^{i \boldsymbol{Q} r_{n}}
\end{aligned}
$$

This quantity is the projection of s perpendicular to \mathbf{Q} :

$$
\begin{aligned}
& \boldsymbol{s}_{\perp}(\boldsymbol{Q})=\widehat{\boldsymbol{Q}} \times \boldsymbol{s} \times \widehat{\boldsymbol{Q}} \\
& \left\langle\boldsymbol{k}^{\prime}\right| W_{s}|\boldsymbol{k}\rangle=4 \pi \widehat{\boldsymbol{Q}} \times \boldsymbol{s} \times \widehat{\boldsymbol{Q}} \cdot e^{i \cdot \boldsymbol{Q} \cdot \boldsymbol{r}_{i}}
\end{aligned}
$$

Introduction to the Theory of Thermal Neutron Scattering G. L. Squires, Dover Publications

Magnetic interaction (orbital)

$$
\boldsymbol{B}(\boldsymbol{R})=\frac{\mu_{0}}{4 \pi} \frac{I \boldsymbol{d} \boldsymbol{l} \times \hat{\boldsymbol{R}}}{R^{2}}=\frac{\mu_{0} e}{4 \pi m_{N}} \frac{\boldsymbol{p}_{\boldsymbol{i}} \times \hat{\boldsymbol{R}}}{R^{2}}=\frac{2 \mu_{0} \mu_{B}}{4 \pi \hbar} \frac{\boldsymbol{p}_{i} \times \hat{\boldsymbol{R}}}{R^{2}}
$$

$$
V_{L}=\gamma \mu_{N} 2 \mu_{B} \frac{\mu_{0}}{4 \pi \hbar} \boldsymbol{\sigma} \cdot \boldsymbol{p}_{\boldsymbol{i}} \times \nabla \frac{1}{|\boldsymbol{R}|}=\text { cste } \boldsymbol{\sigma} \cdot \boldsymbol{W}_{\boldsymbol{L}}
$$

$$
\boldsymbol{W}_{\boldsymbol{L}}=\frac{1}{\hbar} \frac{\boldsymbol{p}_{\boldsymbol{i}} \times \widehat{\boldsymbol{R}}}{R^{2}}
$$

> Use the Fourier transform:

$$
\int \frac{\hat{R}}{R^{2}} e^{i \kappa R}=4 \pi i \frac{\kappa}{\kappa}
$$

$$
\left\langle\boldsymbol{k}^{\prime}\right| W_{L}|\boldsymbol{k}\rangle=\frac{4 \pi i}{\hbar Q} \boldsymbol{p}_{i} \times \widehat{\boldsymbol{Q}}^{i \boldsymbol{Q} r_{i}}
$$

Magnetic interaction strength

Collecting the pre-factors

$$
\left.\left(\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right)_{k, \sigma \rightarrow k^{\prime}, \sigma^{\prime}}=\frac{k^{\prime}}{k}\left(\frac{m}{2 \pi \hbar}\right)^{2}\left|\left\langle\boldsymbol{k}^{\prime}, \boldsymbol{\sigma}^{\prime}\right| V_{S}+V_{L}\right| \boldsymbol{k}, \boldsymbol{\sigma}\right\rangle\left.\right|^{2} \delta \ldots=\left(\frac{m}{2 \pi \hbar} 2 \gamma \mu_{N} \mu_{B} \mu_{0}\right)^{2} \frac{k^{\prime}}{k} \ldots
$$

$$
\left(\frac{m}{2 \pi \hbar} 2 \gamma \mu_{N} \mu_{B} \mu_{0}\right)^{2}=\left(\gamma r_{0}\right)^{2}
$$

$$
r_{0}: \text { free electron radius }=2.8 .10^{-15} \mathrm{~m}
$$

Magnetic scattering length is comparable in magnitude to nuclear scattering!

Magnetic scattering

(Spin + orbital) magnetic scattering

$$
\left.\left(\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right)_{\sigma, \lambda \rightarrow \sigma^{\prime}, \lambda^{\prime}}=\frac{k^{\prime}}{k}\left(\frac{m}{2 \pi \hbar}\right)^{2} \right\rvert\,\left\langle\boldsymbol{k}^{\prime}, \sigma^{\prime}, \lambda^{\prime}\right| V_{m}|\boldsymbol{k}, \boldsymbol{\sigma}, \boldsymbol{\lambda}|^{2} \delta\left(E_{\lambda}-E_{\lambda},+\hbar \omega\right)
$$

Defining:

$$
\boldsymbol{M}_{\perp}=\sum_{i} e^{i \boldsymbol{Q} \cdot \boldsymbol{r}_{\boldsymbol{i}}}\left(\widehat{\boldsymbol{Q}} \times \boldsymbol{s}_{\boldsymbol{i}} \times \widehat{Q}+\frac{i}{\hbar Q} \boldsymbol{p}_{\boldsymbol{i}} \times \widehat{\boldsymbol{Q}}\right)
$$

The spin and orbital part of M_{\perp} are the transverse components of the Fourier transform of the spin and orbital magnetization density

$$
\left.\left(\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right)_{\sigma, \lambda \rightarrow \sigma^{\prime}, \lambda^{\prime}}=\frac{k^{\prime}}{k}\left(\gamma r_{0}\right)^{2} \right\rvert\,\left\langle\lambda^{\prime}, \sigma^{\prime}\right| \sigma \cdot \boldsymbol{M}_{\perp}|\lambda, \boldsymbol{\sigma}|^{2} \delta\left(E_{\lambda}-E_{\lambda^{\prime}}+\hbar \omega\right)
$$

Density matrix formalism

Calculations are enormously simplified by using the density-matrix formalism to describe mixed-states, incomplete polarization of beam, analysis....

Suppose a quantum system in a mixed state, i.e. probability p_{1} to be in state $1, \ldots$. probability p_{i} to be in state i etc....

One defines a density operator $\hat{\rho}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
Chosen an orthonormal basis, $\left|u_{n}\right\rangle$, one can define a density matrix whose elements are

$\rho_{m n}=\left\langle u_{m}\right| \hat{\rho}\left|u_{n}\right\rangle$

The expectation value of an operator A is simply:

$$
\langle A\rangle=\operatorname{tr}(\rho A)
$$

Fano, U.

Description of States in Quantum Mechanics by Density Matrix and Operator Techniques Rev. Mod. Phys., American Physical Society, 1957, 29, 74-93

Density matrix formalism - Neutron spin states

Neutron, a spin $1 / 2$ particle

$$
\begin{aligned}
& |\uparrow|=|1 / 2,1 / 2\rangle \\
& |\downarrow|=|1 / 2,-1 / 2\rangle
\end{aligned}
$$

Spin operators:

$$
\begin{array}{llll}
\widehat{S}_{+}|\uparrow|=0 & \widehat{S}_{+}|\downarrow=| \boldsymbol{\uparrow} & \widehat{S}_{z}|\uparrow=1 / 2| \uparrow & \widehat{S}_{+}=\widehat{S}_{x}+i \widehat{S}_{y} \\
\widehat{S}_{-}|\uparrow=| \downarrow & \widehat{S}_{-} \mid \downarrow=0 & \widehat{S}_{z}|\downarrow=-1 / 2| \downarrow & \widehat{S}_{-}=\widehat{S}_{x}-i \widehat{S}_{y}
\end{array}
$$

Pauli spin operators and matrices:

$$
\widehat{\alpha}_{x}=2 \widehat{S}_{x}, \widehat{\sigma}_{y}=2 \widehat{S}_{y}, \widehat{\sigma}_{z}=2 \widehat{S}_{z} \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Density matrix representing the incident neutron beam polarization (\boldsymbol{P}) :

$$
\hat{\rho}=\frac{1}{2}(I+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}})=\frac{1}{2}\left(I+P x \cdot \widehat{\sigma}_{x}+P y \cdot \widehat{\sigma}_{y}+P z \cdot \widehat{\sigma}_{z}\right)
$$

Magnetic interaction(elastic case)

A very easy way to averaging over all spin states:

Scattered intensity: $\quad \frac{d \sigma}{d \Omega}=\left(\gamma r_{0}\right)^{2} \operatorname{tr}\left[\left(\boldsymbol{M}_{\perp} . \boldsymbol{\sigma}\right) \rho\left(\boldsymbol{M}_{\perp} \cdot \boldsymbol{\sigma}\right)^{+}\right]$

Final polarization: $\quad \boldsymbol{P}_{\boldsymbol{f}} \cdot \frac{d \sigma}{d \Omega}=\left(\gamma r_{0}\right)^{2} \operatorname{tr}\left[\boldsymbol{\sigma}_{\boldsymbol{f}}\left(\boldsymbol{M}_{\perp} \cdot \boldsymbol{\sigma}\right) \rho\left(\boldsymbol{M}_{\perp} \cdot \boldsymbol{\sigma}\right)^{+}\right]$

Blume, M.
Polarization Effects in the Magnetic Elastic Scattering of Slow Neutrons Phys. Rev., American Physical Society, 1963, 130, 1670-1676

Magnetic interaction (unpolarized)

In the case of unpolarized neutron beam (and no analysis), there are no interference terms between nuclear and magnetic scattering. The scattered intensity is simply the square of the amplitude derived before.

For example if magnetic structure with $\mathrm{k}=0$,

$$
\frac{d \sigma}{d \Omega}=F_{N}(\boldsymbol{Q})^{2}+\left|\boldsymbol{M}_{\perp(Q)}\right|^{2}
$$

Magnetic interaction (polarized)

$$
\begin{aligned}
& I=\frac{1}{2} \operatorname{tr}\left[\left(N \mathbb{1}+\boldsymbol{M}_{\perp} \cdot \boldsymbol{\sigma}\right)\left(\mathbb{1}+\boldsymbol{P}_{\boldsymbol{i}} \cdot \boldsymbol{\sigma}\right)\left(N^{*} \mathbb{1}+\boldsymbol{M}_{\perp}^{*} \cdot \boldsymbol{\sigma}\right)\right] \\
& I=N N^{*}+\boldsymbol{M}_{\perp} \cdot \boldsymbol{M}_{\perp}^{*}+\boldsymbol{P}_{\boldsymbol{i}} \cdot\left(N \boldsymbol{M}_{\perp}^{*}+N^{*} \boldsymbol{M}_{\perp}\right)+i \boldsymbol{P}_{\boldsymbol{i}}\left(\boldsymbol{M}_{\perp}^{*} \times \boldsymbol{M}_{\perp}\right)
\end{aligned}
$$

$\boldsymbol{P}_{\boldsymbol{f}} . I=\frac{1}{2} \operatorname{tr}\left[\boldsymbol{\sigma}\left(N \mathbb{1}+\boldsymbol{M}_{\perp} \cdot \boldsymbol{\sigma}\right)\left(\mathbb{1}+\boldsymbol{P}_{\boldsymbol{i}} \cdot \boldsymbol{\sigma}\right)\left(N^{*} \mathbb{1}+\boldsymbol{M}_{\perp}^{*} \cdot \boldsymbol{\sigma}\right)\right]$

$$
\begin{equation*}
\boldsymbol{P}_{\boldsymbol{f}} I=\boldsymbol{P}_{\boldsymbol{i}}\left(N N^{*}-\boldsymbol{M}_{\perp} \boldsymbol{M}_{\perp}^{*}\right)+\left(\boldsymbol{P}_{\boldsymbol{i}} . \boldsymbol{M}_{\perp}\right) \boldsymbol{M}_{\perp}^{*}+\left(\boldsymbol{P}_{\boldsymbol{i}} . \boldsymbol{M}_{\perp}^{*}\right) \boldsymbol{M}_{\perp}-i\left(N \boldsymbol{M}_{\perp}^{*}-N^{*} \boldsymbol{M}_{\perp}\right) \times \boldsymbol{P}_{\boldsymbol{i}} \tag{15}
\end{equation*}
$$

$$
+\left(N \boldsymbol{M}_{\perp}^{*}+N^{*} \boldsymbol{M}_{\perp}\right)-i\left(\boldsymbol{M}_{\perp}^{*} \times \boldsymbol{M}_{\perp}\right)
$$

Blume, M.
Polarization Effects in the Magnetic Elastic Scattering of Slow Neutrons Phys. Rev., American Physical Society, 1963, 130, 1670-1676

Magnetic "extinction"

- From the projection operation emerges a very important extinction condition (if M parallel to Q, scattering is null)
- However, the only directional information about M(Q) comes from the projection operation, so great loss of information from this projection. We are only sensitive to the norm of the interaction vector.
- We will see that using polarized neutrons (3D polarimetry) allows to access directly the direction information (and phase).

Magnetic "extinction" (comparison with X-ray)

In non-resonant X-ray magnetic scattering, the cross-section depends upon projections on $\mathbf{k}_{\mathbf{i}}, \mathbf{k}_{\mathbf{f}}$ Consequence: signal depends on the azimuthal angle

Scattering amplitude ($\sigma \sigma$): $\quad-$ i. $\boldsymbol{M}(\boldsymbol{Q}) . \widehat{\boldsymbol{k}}_{\boldsymbol{i}} \times \widehat{\boldsymbol{k}}_{f}$
Scattering amplitude $(\pi \sigma): \quad-2 . i . \sin ^{2}(\theta) . \boldsymbol{M}(\boldsymbol{Q}) . \widehat{\boldsymbol{k}}_{\boldsymbol{i}}$

Unit-cell magnetic structure factor

Need to take into account the spatial distribution of the electron-spins and sum over all magnetic sites in the unit-cell:

$$
\boldsymbol{M}(\boldsymbol{Q})=\sum_{j} f_{j}(\boldsymbol{Q}) \cdot \boldsymbol{m}_{j} \cdot T_{j}(\boldsymbol{Q}) e^{i \boldsymbol{Q} \cdot \cdot_{j}}
$$

Magnetic structure factor (complex vector)
Magnetic form factor: $f_{j}(\boldsymbol{Q})=\frac{1}{\left|m_{j}\right|} \int m_{j}(\boldsymbol{R}) e^{i \boldsymbol{Q} \boldsymbol{R}} d \boldsymbol{R}$
Thermal parameter (Debye-Waller factor): $T_{j}(\boldsymbol{Q})$

$$
\boldsymbol{M}_{\perp}(\boldsymbol{Q})=\hat{\boldsymbol{Q}} \times \boldsymbol{M}(\boldsymbol{Q}) \times \widehat{\boldsymbol{Q}}=\boldsymbol{M}(\boldsymbol{Q})-(\boldsymbol{M}(\boldsymbol{Q}) \cdot \widehat{\boldsymbol{Q}}) \cdot \hat{\boldsymbol{Q}}
$$

Magnetic interaction vector (complex vector)

Magnetic form factor

$f_{j}(\boldsymbol{Q})=\frac{1}{\left|m_{j}\right|} \int m_{j}(\boldsymbol{R}) e^{i \boldsymbol{Q} \boldsymbol{R}} d \boldsymbol{R}$
In the most general case, the magnetization distribution is non-spherical:
$\boldsymbol{m}(\boldsymbol{R})=\sum_{l} R_{l}^{2}(R) \sum_{m, p} \beta_{l}^{m, p} \cdot y_{l}^{m, p}(\widehat{\boldsymbol{R}})$

Using the addition theorem:

$$
f(\boldsymbol{Q})=4 \pi \sum_{l} i^{L}\left\langle j_{L}(Q \cdot R)\right\rangle \sum_{m, p} \beta_{l}^{m, p} \cdot y_{l}^{m, p}(\widehat{\boldsymbol{Q}})
$$

with:
$\left\langle j_{L}(Q \cdot R)\right\rangle=\int R_{L}^{2}(R) \cdot j_{L}(Q \cdot R) R^{2} d R$

Very often used in the dipolar approximation when modeling magnetic structures.

Magnetic form factor (Dipolar limit, j0 term)

Magnetic form factor tabulated by Brown:
International Tables for Crystallography, Volume C, sect. 4.4.5)

Calculated by Hartree-Fock method using Slater type orbitals then fitted using analytic approximations (expansion in exponentials)

$$
\begin{aligned}
& \left\langle j_{l}(s)\right\rangle=s^{2}\left(A_{l} \exp \left\{-a_{l} s^{2}\right\}+B_{l} \exp \left\{-b_{l} s^{2}\right\}+C_{l} \exp \left\{-c_{l} s^{2}\right\}+D_{l}\right) \\
& \left\langle j_{0}(s)\right\rangle=A_{0} \exp \left\{-a_{0} s^{2}\right\}+B_{0} \exp \left\{-b_{0} s^{2}\right\}+C_{0} \exp \left\{-c_{0} s^{2}\right\}+D_{0}
\end{aligned}
$$

Magnetic form factor (example)

Magnetic scattering

Magnetic form factor (dipolar limit, j0,j2)

In the dipole approximation:

$$
f(Q)=<j_{0}(Q)>+\left(1-\frac{2}{g}\right)<j_{2}(Q)>
$$

International Tables of Crystallography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513

Magnetic form factor (example)

- Form factor is similar to the X-ray form factor except that in the case of X-ray, the scattering arise from all electrons and not simply the unpaired electrons.

Magnetic form factor

Form factor depends not only on the modulus of Q but also the direction.

$$
\boldsymbol{m}(\boldsymbol{R})=\sum_{l} R_{l}^{2}(R) \sum_{m, p} \beta_{l}^{m, p} \cdot y_{l}^{m, p}(\widehat{\boldsymbol{R}})
$$

-

Q

Examples of magnetic scattering experiments

Different magnetic state(s)

- In some crystals, some of the atoms/ions have unpaired electrons (transition metals, rare-earths).
- The intra-atomic electron correlation, Hund's rule, favors a state with maximum S / J, the ions posses a localized magnetic moment

- When exchange interactions (direct, superexchange, double exchange, RKKY,dipolar) stabilizes a long range magnetic order.

Different magnetic state(s)

- Direct exchange interaction (direct overlap of orbital wave-functions) AFM for short-distance
- Indirect exchange interaction
- Super-exchange (M-O-M)
- Super super-exchange (M-O-O-M)
 coupling through a diamagnetic anion or more complex exchange paths
-RKKY interactions
(coupling of localized moments through conduction electrons)
-Dipole-dipole interaction.
Decrease rapidly with distance. Usually relevant for large moments at low T

First study of antiferromagnetism with neutrons

1945

Oak Ridge Nat. Lab.

FIG. 1. Neutron diffraction patterns for MnO at room mperature and at $80^{\circ} \mathrm{K}$

Detection of Antiferromagnetism by Neutron Diffraction*
C. G. Shull

Oak Ridge National Laboratory, Oak Ridge, Tennessee
J. Samuel Smart

Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland August 29, 1949

MnO

HSC18

More complex example(s)

Reciprocal lattice
Reciprocal lattice (incommensurate magnetic peaks)

Formalism of propagation vector(s)

For simplicity, in particular for wave-vector inside the BZ, one usually describe magnetic structures with Fourier components:

$$
\boldsymbol{m}_{\boldsymbol{l} \boldsymbol{j}}\left(\boldsymbol{R}_{L}\right)=\sum_{\boldsymbol{k}} \boldsymbol{S}_{\boldsymbol{k} \cdot} \cdot e^{-2 \pi i \boldsymbol{k} \cdot \boldsymbol{R}_{L}}
$$

which for a single propagation vector :

$$
\boldsymbol{m}_{l j}\left(\boldsymbol{R}_{L}\right)=\boldsymbol{S}_{k j} \cdot e^{-2 \pi i k \cdot R_{L}}+\boldsymbol{S}_{-k j} \cdot e^{2 \pi i k \cdot R_{L}}
$$

Since $\mathrm{m}_{\mathrm{l} j}$ is a real vector, one must imposes the condition $\mathbf{S}_{-\mathrm{kj}}{ }^{*}=\mathbf{S}_{\mathrm{kj}}$

Here $S_{k j}$ is a complex vector made of linear combinations of basis vectors that, in the most general case, do not span necessary the same irreducible representations.

k inside BZ

- k interior of the Brillouin zone (pair $k,-k$)

Amplitude modulation

Quite complex ordered states $\left(\mathrm{RMn}_{2} \mathrm{O}_{5}\right)$

$$
\mathrm{k}=(1 / 2,0,1 / 4)
$$

AFM magnetic chains (ab-plane) Cycloidal component (c-direction)

Quite complex ordered states $\left(\mathrm{RMn}_{2} \mathrm{O}_{5}\right)$

$\mathrm{YMn}_{2} \mathrm{O}_{5}$
355 independent reflections 37 refined parameters: $\left\{R x-R y-l z-M a g P h\left(\mathrm{Mn}^{3+}\right.\right.$ fixed $)-$ ext4\}
$\mathrm{m}\left(\mathrm{Mn}^{4+}\right)=2.4 \mu_{\mathrm{B}}$
$\mathrm{m}\left(\mathrm{Mn}^{3+}\right)=3.1 \mu_{\mathrm{B}}$
$\mathrm{HoMn}_{2} \mathrm{O}_{5}$
381 independent reflections
53 refined parameters:
$\left\{\mathrm{Rx}-\mathrm{Ry}-\mathrm{Iz}-\mathrm{MagPh}\left(\mathrm{Mn}^{3+}\right.\right.$
fixed)-ext4\}
$\mathrm{m}\left(\mathrm{Mn}^{4+}\right)=2 \mu_{\mathrm{B}}$
$\mathrm{m}\left(\mathrm{Mn}^{3+}\right)=2.5 \mu_{\mathrm{B}}$
$m(\mathrm{Ho})=0 / 1 \mu_{\mathrm{B}}$
$\mathrm{BiMn}_{2} \mathrm{O}_{5}$
204 independent reflections 24 refined parameters:
\{Rx-Ry-Rz-ext4\}
$\mathrm{m}\left(\mathrm{Mn}^{4+}\right)=2.1 \mu_{\mathrm{B}}$
$\mathrm{m}\left(\mathrm{Mn}^{3+}\right)=2.8 \mu_{\mathrm{B}}$

Magnetic ordering of Ho and Cu ions in $\mathrm{Ho}_{2} \mathrm{BaCuO}_{5}$ (D1B)

Competing multi-q magnetic structures in $\mathrm{HoGe}_{3}(\mathrm{I} \&$

 II)

P Schöbinger-Papamantellos, J Rodríguez-Carvajal, LD Tung, C Ritter and KHJ Buschow
J. Physics: Condensed Matter 20 (2008) 195201 (12pp)

Figure 6. Thermodiffractogram of HoGe_{3} : (a) in a 2 D projection on heating and cooling showing the succession of magnetic phase transitions below $T_{\mathrm{N}}=11 \mathrm{~K}$ at $T_{2}^{\mathrm{H}}=8.1 \mathrm{~K}$ and $T_{3}^{\mathrm{H}}=4.8 \mathrm{~K}$ (temperatures given on heating) and (b) in a 3D view on cooling.

Multi-k structure: conical example

Multi-k structure with:

- Helical modulation
- Ferromagnetic component

Multi-k structures : Bunched modulations

\cdot	\uparrow	\cdot	\downarrow	
\square	\uparrow	\cdot	\downarrow	
\cdot	\uparrow	\cdot	\downarrow	

TbMnO_{3}

Kenzelmann, PRL 95, 087206 (2005)

Multi-k structures

Example of a 4-k structure: the skyrmion lattice

- $k_{1}+k_{2}+k_{3}=0$, same chirality for k_{1}, k_{2}, k_{3}
- Ferromagnetic component

Multi-k structures

$F=\ldots+S_{1} e^{i k_{1}+\varphi_{1}} \cdot S_{2} e^{i k_{2}+\varphi_{2}} \cdot S_{3} e^{i k_{3}+\varphi_{3}} \cdot M$

Skyrmion in MnSi

Domains

- Because the symmetry of the ordered magnetic state is lower than that of the paramagnetic state (loss of certain symmetry elements)
a If the order of the paramagnetic group $\mathbf{G}_{\mathbf{0}}$ is \mathbf{g} and the order of the ordered group \mathbf{G}_{1} is \mathbf{h}, there will be \mathbf{g} / \mathbf{h} domains.
- The different types of domains:
o configuration domains (k-domains) : loss of translational symmetry
orientation domains (S-domains): loss of rotational symmetry
- 180 degrees domains (time-reversed domains): loss of time-reversal symmetry
o chiral domains: loss of inversion symmetry

Chiral-domains

- Loss of inversion symmetry generates two domains of opposite handedness
- Note however that this is not the case if the paramagnetic group is a chiral group, in which case a single handedness is stabilized (no energy degeneracy)

Inversion domains ("chiral" scattering)

Inversion domains

Crystal: b-axis along z-direction Electric field up to $2.2 \mathrm{kV} / \mathrm{cm}$ applied along b-axis

Inversion domains

$$
\mathrm{P}_{\mathrm{yx}}=\mathrm{P}_{\mathrm{zx}} \text { created polarization }
$$

For the same $h k l$ reflection, the sign of the created polarization is opposite for inversion domains

Radaelli et al., PRL 2008

Short-range correlations

Probing short-range correlations
Via diffuse magnetic scattering

Simple J1-J2 cubic fcc magnet

Short range correlations in frustrated beta-Mn

JAM. Paddison et al. PRL (2013)

Crystal field excitation(s)

$$
\begin{aligned}
\frac{d^{2} \sigma(i \rightarrow j)}{d \Omega d E^{\prime}}= & N \frac{k_{f}}{k_{i}}\left(\frac{\hbar \gamma e^{2}}{m c^{2}}\right)^{2} e^{-2 W}\left|\frac{1}{2} g_{J} F(\mathbf{Q})\right|^{2} \\
& \times \sum_{i, j} n_{i} \mid\langle j| J_{\perp}|i\rangle^{2} \delta\left(E_{i}-E_{j}+\hbar \omega\right),
\end{aligned}
$$

Y. Xiao et al., PRB 88, 214419 (2013)

Spin excitations

Martin Mourigal et al., Nature Physics, 9, 435 (2013)
Fully polarized state

c

