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Monday 6 February – Tutorials 

T1.  BAG Meeting 
T2.  Getting the most from new in plate and plate to beam modalities on MASSIF-1 
T3.  Volume image analysis of tomographic data 
T4.  Science, communication and social media 
T5.  Data reduction for scattering experiments 

T6.  Introduction to XAS 

T7.  EXAFS data analysis 

T8.  Ab initio simulation of X-ray absorption spectroscopies using FDMNES 

T9. XPCS: X-ray Photon Correlation Spectroscopy 

T10. Coherent imaging analysis with PyNX: CDI (small angle and Bragg), ptychography, 

holotomography 

 

Tuesday 7 February – Plenary Session 

Venue:  ESRF Auditorium 

 Administrative Assistants: Catherine Blanc – Agathe Chebre – Sonya Girodon 

 Tel: +33 (0)4 76 88  23 58 / 29 80 / 28 80 – usermeet@esrf.fr 

 

Wednesday 8 February – Microsymposia 

UDM1 Environmental sciences: challenges and opportunities under a new era of 
synchrotron light 

Venue: IBS Seminar Room 

contact: udm1-um23@esrf.fr 
Administrative Assistant: Eleanor Ryan 
Tel: +33 (0)4 76 88  19 92 

 
UDM2 Tomography at BM18 

Venue: ESRF MD-1-21 

contact: udm2-um23@esrf.fr 
Administrative Assistant: Eva Jahn-Feppon 
Tel: +33 (0)4 76 88  26 19 

 
UDM3 Operando science of functional energy conversion, storage materials and 

devices 
Venue: ESRF Auditorium 

contact: udm3-um23@esrf.fr 
Administrative Assistant: Claudine Romero 
Tel: +33 (0)4 76 88  20 27 
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Practical information 
 

 

You have been given a BADGE at the site entrance: this badge is strictly personal and due to the strengthened 

security measures, you MUST wear your badge at all times on site over the whole period of the event. It is 

your pass for the site entrance and, on site, for the Guesthouse and the canteen. Please note that access to 

the Experimental Hall is strictly forbidden. 

 

Lunches  Monday 6 February  Tuesday 7 February 

Lunches are served from 
 

11:30 - 13:30 
 

ground floor - restaurant 

 
11:30 - 13:00 

 

1st floor - restaurant 
 

Please present your BADGE to 
the cashier. 

 

Buffet Dinner 
 

18:30 – 20:30 
 

under the marquee 

 

Poster Session 

& Cocktail Dinner 
 

18:00 – 22:00 
 

under the marquee 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TWEETING DURING THE MEETING? 

 

Don't forget to add the hashtag #UM2023 to your messages. And follow the ESRF on social media: 
 

TWITTER @esrfsynchrotron - FACEBOOK @esrfsynchrotron - INSTAGRAM esrf_synchrotron 
 

For further information, please contact: Catherine Blanc, Agathe Chebre, Sonya Girodon 

ESRF Central Building – Room 004 (ground floor) – Tel: +33 (0)476 88  23 58 / 29 80 / 28 80 

Badge information 

Hotels in the center of Grenoble 

HOTELS 

1  Ibis Grenoble Gare 
2  Novotel Grenoble 
Centre 
3  Hotel Europole 
4  Residhotel Central’Gare 
5  Maison Barbillon 

HOTELS 

6  Kyriad direct Grenoble 
centre - Hotel des Alpes 
7  Hotel Gloria 
8  Hotel Ibis Styles Gare 
9  Ibis Grenoble Centre 
Bastille 
10  Hotel de l’Europe 

1 

2 
3 

4 
5 

7 
8 
B

9 
B

10 
B

6 

Train Station 
(SNCF) 

TAXI GRENOBLOIS 

+33 (0)4 76 54 42 54 
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Tutorials 

6 February 2023 

 

 

 Overall Programme 



 

 

 
  TUTORIAL TITLE ORGANISERS TIME VENUE 

T1 BAG Meeting 
David Flot (ESRF) 
Montserrat Soler Lopez (ESRF) 
Max Nanao (ESRF) 

09:00 - 12:30 Auditorium 

T2 
Getting the most from New in plate and plate to beam modalities 
on MASSIF-1 

Serena Rocchio (EMBL) 
Nicolas Foos (EMBL) 
Matthew Bowler (EMBL) 
Didier Nurizzo (ESRF) 

09:00 - 12:00 ID30A-1 

14:00 - 17:00 ID30A-1 

T3 Volume image analysis Alexander Rack (ESRF) 09:00 - 17:00 MD-1-21 

T4 Science, communication and social media Delphine Chenevier (ESRF) 12:15 -13:15 Visitor Center 

T5 Data reduction for scattering experiments Jérôme Kieffer (ESRF) 09:00 - 12:00 500-501 

T6 Introduction to XAS Kirill Lomachenko (ESRF) 09:00 - 12:00 CIBB Seminar Room 

T7 EXAFS data analysis Francesco D'Acapito (ESRF) 14:00 - 17:00 337 

T8 
Ab initio simulation of X-ray absorption spectroscopies using 
FDMNES 

Yves Joly (ESRF) 14:00 - 17:00 BEL-1-01 

T9 XPCS: X-ray Photon Correlation Spectroscopy 
Federico Zontone (ESRF) 
Yuriy Chushkin (ESRF) 
Marco Cammarata (ESRF) 

09:00 - 12:00 EMBL 9-10 

T10 
Coherent imaging analysis with PyNX: CDI (small angle and Bragg), 
ptychography, holotomography 

Vincent Favre Nicolin (ESRF) 
Steven Leake (ESRF) 
Corentin Chatelier (CEA)  
David Simonne (Soleil) 

09:00 - 17:00 LOB-1-45 

 

 

 

User Meeting 2023 - Tutorials 
 

Monday 6 February 2023 



 

 
 

 

 

 

 

 

  

 

 

Plenary Session 

7 February 2023 

 

 

 Programme 
 Abstracts of lectures 



 
 
 

MORNING SESSION  

09:00 - 09:05 Opening and welcome by the User Organisation 

09:05 - 09:50 
Invited Speaker 
“Order from disorder in sarcomeric Z-disks” 
Kristina Djinović-Carugo, Head of EMBL Grenoble, France 

Chair: 
Adriana Miele (UOC) 

09:50 - 10:35 

Keynote Lecture 1  
“Synchrotron radiation enabled approaches to Human 
Bioarchaeology: Advances, problems and potential” 
Kirsi Lorentz, The Cyprus Institute, Nicosia, Cyprus 

Chair: 
Barbara Fayard (UOC) 

10:35 - 11:00 Break 

11:00 - 12:30 

ESRF-EBS Facility and Director's Report 

 Introduction - Francesco Sette 

 New Community Access Modes - Annalisa Pastore 

 New scientific opportunities - Gema Martinez Criado 

 Latest news from ID03 Carsten Detlefs, ID21 Marine Cotte, 
ID24 Kirill Lomachenko 
& questions for all 

Chair: 
Beatrice Ruta (UOC) 

12:30 - 14:00 LUNCH break 
 

AFTERNOON SESSION 

14:00 - 14:45 

Keynote Lecture 2 
“New frontiers and new tools in High Pressure Physics: an illustration 
with results on hydrogen rich systems” 
Paul Loubeyre, CEA DIF, Université Paris-Saclay, France 

Chair: 
Guillaume Morard (Chair of 
UOC) 

14:45 - 15:30 

Keynote Lecture 3 
“The battery hub at ESRF: accelerating and standardizing battery 
characterization workflows” 
Sandrine Lyonnard, CEA Grenoble, Laboratoire SyMMES, France 

Chair: 
Karsten Küpper (UOC) 

15:30 - 16:00 Break 

16:00 - 17:00 
Poster Clips Chair: 

Alberto Martinelli (UOC) 

17:00 - 17:50 
Young Scientist Award 2023 
President: Cormac McGuiness, ESUO President 

Chair: 
Guillermo Requena (UOC) 

17:50 - 18:00 Conclusion 

18:00 - 22:00 Poster Session, Poster Prize & Cocktail Dinner 

Plenary Session 
Tuesday 7 February 2023 



 

 

Order from disorder in sarcomeric Z-disks 
 

K. Djinovic Carugo1,2 

 
1European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, 38000 Grenoble, France; 
2Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna 

Biocenter 5, A-1030 Vienna, Austria kristina.djinovic@embl.org 

 

 

The sarcomere is the minimal contractile unit in the cardiac and skeletal muscle, where actin 

and myosin filaments slide past each other to generate tension. This molecular machinery is 

supported by a subset of highly organised cytoskeletal proteins that fulfil architectural, 

mechanical and signalling functions. The ultra-structure of sarcomere is highly organized and 

delimited by Z-disks, which play a central role in the mechanical stabilization and force 

transmission.  

In the Z-disks – the lateral boundaries of the sarcomere machinery – the protein α-actinin-2 

cross-links antiparallel actin filaments from adjacent sarcomeres, and additionally serves as a 

binding platform for a number of other Z-disk proteins. In striated muscle cells, the Z-disk 

represents a highly organized three-dimensional assembly containing a large directory of 

proteins orchestrated in a multi-protein complex centred on its major component α-actinin, with 

still poorly understood hierarchy and three-dimensional interaction map. On the way to 

elucidate the molecular structural architecture of the Z-disk, the hierarchy of its assembly and 

structure-function relationships, we are studying binary and higher order sub-complexes of α-

actinin using a combination of molecular biophysics, structural and biochemical approaches. 

FATZ proteins interact with α-actinin and five other core Z-disk proteins, contributing to 

myofibril assembly and maintenance as a protein interaction hub. We determined the first 

structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, 

which is best described as a conformational ensemble. We show that FATZ-1 forms a tight 

fuzzy complex with α-actinin-2 and propose a molecular interaction mechanism via main 

molecular recognition elements and secondary binding sites. The obtained integrative model 

reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent 

scaffold function, might organise interaction partners and stabilise α-actinin-2 preferential 

orientation in the Z-disk. Finally, we uncover FATZ-1 ability to phase-separate and form 

biomolecular condensates with α-actinin-2, raising the intriguing question whether FATZ 

proteins can create an interaction hub for Z-disk proteins through membrane-less 

compartmentalization during myofibrillogenesis. 

I will present our studies on the interaction of the major Z-disk protein α-actinin with FATZ 

and Z-portion of titin, forming dynamic fuzzy complexes, and discuss findings in view of 

asymmetric sorting of α-actinin and sarcomeric Z-disk architecture and assembly. 

 

 

 



New frontiers and new tools in High Pressure Physics: an illustration with 

results on hydrogen rich systems 

 

Paul Loubeyre1 

 
1CEA/DIF/DPTA 

 

 

High pressure physics is an old field which is advancing by the implementation of new tools.  

At least three facts can explain the great dynamism of the high pressure field.  The frontier of 

exploration is now pushed up to the TPa (10 million bars), that is the pressure domain of 

planetary interiors.  A different periodic table of atoms exists under a million bars and new 

materials can thus be synthesized, some with remarkable properties. Many measurements 

have been developed, particularly in front of synchrotrons, which enable a fine and detailed 

characterization of the properties of materials under extreme pressures almost as if at ambient 

pressure.  

 

We will illustrate this renewal of the high pressure domain by focusing on some results 

around dense hydrogen systems.  This theme is pushing the development of new experimental 

approaches and has implications for fundamental physics, materials science and astrophysics.  

In particular, we will discuss: hydrogen metallic phase; super-hydrides which are 

superconductors at high temperature; the superionic forms of water ice; the miscibility of 

H/He mixtures in the conditions of planetary interiors. 



 

The battery hub at ESRF: accelerating and standardizing battery 

characterization workflows  
 

Q. Jacquet1, S. Tardif2, J-F. Colin3, C. Villevieille4, L. Daniel3, M. Chandesris3,  

S. Lyonnard1 

 
1. Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France 

2. Department of Physics, Univ. Grenoble Alpes, CEA-IRIG, Grenoble, France 

3. Department of Electricity and Hydrogen for Transport, Univ. Grenoble Alpes, CEA- LITEN, Grenoble, 

France 

4. Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France 

 
sandrine.lyonnard@cea.fr 

 

 

The development of high performance, safe and sustainable batteries for e.g. e-mobility, 

portable and stationary applications, demands overcoming major technological challenges. A 

more holistic approach is needed to accelerate the discovery of new materials and chemistries, 

which requires implementing advanced battery characterization in an integrated, automatized 

and unified manner. In fact, to accelerate our understanding of the variety of processes that 

dictate battery performance and ageing across an enormous range of relevant time and length-

scales, we need to go beyond the traditional single-shot, sophisticated experiment and build 

centralized experimental frameworks based on multi-modal multi-techniques standardized data 

acquisition and analysis workflows [1].  

 

To gather forces and efforts, and create impact beyond the usual competition rules and 

incremental progress, new mechanisms and methods organized into community-unified 

infrastructures are foreseen. In this spirit, we launched the pilot phase of the Grenoble Battery 

Hub, a new type of collaborative platform rallying the European battery community and the 

Large Scale Facilities around central scientific electrochemistry-related topics. This hub is 

designed to provide new access and cooperation modes, with the objective to accelerate 

Research & Innovation on batteries by setting an open scientific, technical and communication 

platform dedicated to promoting, carrying out and analysing cutting-edge neutron and X-ray 

investigations of battery components and devices. In this talk, we will describe the early stage 

of operation of the pilot phase started in sept. 2021, and present results obtained at ESRF using 

an array of techniques (diffraction, scattering, spectroscopy, imaging, tomography) to tackle an 

array of scientific questions (battery failure, ageing mechanisms, new chemistry reactions) with 

emphasis on cutting-edge correlative operando experiments conducted on standardized and/or 

smart batteries. We will discuss how the Hub organization shall go beyond standard 

collaboration schemes to tackle the challenges related to energy storage, and boost innovation 

by optimizing research workflow in relation to the European efforts and targets [2]. 
 
References 
[1] - Advanced Energy Materials, 2022, 2102694. D. Atkins, […], S. Lyonnard*. Accelerating Battery 

Characterization Using Neutron and Synchrotron Techniques: Toward a Multi-Modal and Multi-Scale 

Standardized Experimental Workflow. DOI:10.1002/aenm.202102694 

[2] - Advanced Energy Materials, 2022, 12, (17), 2102785. Amici, J., [...], Edström, K.*. A Roadmap for 

Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research 

Initiative BATTERY 2030+. DOI:10.1002/aenm.202102785 

 

 



 

 

 

 

 

 

User-Dedicated Microsymposium 

UDM 1 

8 February 2023 
 

Environmental sciences: 

challenges and opportunities 

under a new era of synchrotron light 

 

UOC Organiser  Adriana Miele 

Beatrice Ruta 

ESRF Organisers  Hiram Castillo Michel 

Jean-Louis Hazemann 

Non-ESRF 

Organisers 

 Blanche Collin 

Alejandro Fernandez-Martinez 

Clément Levard 

Emmanuelle Montarges-

Pelletier 

Géraldine Sarret 

 

 Programme 
 Abstracts of Keynote & User Talks 



 

 

 
 

 

Wednesday, 8 February 2023 - Microsymposium UDM1 

IBS Seminar Room 

8:40 – 8:45 Welcome from the organisers 

 

Morning session 

 Session I 

8:45 – 9:25 
Keynote talk 1 
High brightness and high coherence: what does it mean 
for imaging in environmental science? 

Chris Jacobsen 

Northwestern University, USA 

9:25 – 9:45 

User talk 
Nannoconus: Analytical clue from past to future oceanic 
environments 

Rajkumar Chowdhury 

Université Grenoble Alpes, 
France 

9:45 – 10:05 

User talk 

Porosity evolution during sustainable ironmaking with 
hydrogen probed by 4D synchrotron X-ray nano-
tomography 

Yan Ma 

Max-Planck-Institut für 
Eisenforschung, Germany 

10:05 – 10:30 Coffee break 

 Session II 

10:30 – 11:10 

Keynote talk 2 

Investigating the structure and reactivity of mineral–
water interfaces using in situ high-resolution X-ray 
reflectivity 

Sang Soo Lee 

Argonne National Laboratory, 
USA 

11:10 – 11:30 

User talk 

In situ measurements of interface evolution during 
mineral dissolution 

Bastien Wild 

Université Grenoble Alpes, 
France 

11:30 – 11:50 

User talk 

Importance synchrotron X-ray radiation in determining 
technology critical elements speciation : application in 
(bio)hydrometallurgy 

Eric van Hullebusch 

Institut de Physique du Globe de 
Paris, France 

11:50 – 12:10 

User talk 

Yttrium speciation in world-class phosphorite deposit 

Clément Bonnet 

Université de Montpellier, 
France 

12:10 – 13:30 Lunch Break 

 

  

  

UDM1. Environmental sciences: 
challenges and opportunities 

under a new era of synchrotron light 



 

 
 

Afternoon session 

 Session III 

13:30 – 14:10 

Keynote talk 3 

Elucidating the uptake and transformation of 
nanophases by plant leaves 

Astrid Avellan 

CNRS, France 

14:10 – 14:30 

User talk 

Arsenic speciation controls the immobilization echanism 
and stability of mixed valence iron minerals 

Jeffrey Paulo H. Perez 

GFZ German Research Centre 
for Geosciences, Germany 

14:30 – 14:50 

User talk 

Spatially and temporally resolved mineral phase 
evolution and arsenic retention in microfluidic models of 
zerovalent iron-based water treatment 

Andreas Voegelin 

Swiss Federal Institute of 
Aquatic Science and 
Technology, Switzerland 

14:50 – 15:10 

User talk 

Nanocrystalline manganese oxides: structure, reactivity, 
and their role in the geochemical cycle of trace elements 

Sylvain Grangeon 

BRGM, France 

15:10 – 15:35 Coffee break 

 Session IV 

15:35 – 15:55 

User talk 

Carbonate-oxalate mineralogy from the Great Barrier 
Reef Under Synchrotron light 

Eduardo Villalobos-Portillo 

ESRF, France 

15:55 – 16:15 

User talk 

From soil to bean: Unravelling the pathways of cadmium 
in cacao 

Hester Blommaert 

Université Grenoble Alpes, 
France 

16:15 – 16:35 

User talk 

How soil organic carbon fractions and the phosphorus 
distribution at the microscale respond to land use 
change in Amazonian Dark Earth and Acrisol 

Luis Carlos Colocho Hurtarte 

ESRF, France 

16:35 – 16:55 

User talk 

Rhenium speciation and reduction pathway in sulfidic 
settings 

Carolina Guida 

Université Grenoble Alpes, 
France 

 

  

UDM1. Environmental sciences: 
challenges and opportunities 

under a new era of synchrotron light 



High brightness and high coherence: what does it mean for imaging in 

environmental science? 
 

Chris Jacobsen1, Argonne Distinguished Fellow, Advanced Photon Source, Argonne National 

Laboratory, Lemont, IL, USA 

 
1 Professor, Department of Physics & Astronomy, Northwestern University, Evanston, IL, USA 

 

 

We are fortunate to live in an era where quasi-time-continuous x-ray brightness and coherent 

flux have been increasing at incredible rate --  faster than Moore’s law for integrated circuits!  

What opportunities does this create for imaging in environmental science? After a short 

reminder of what is meant by brightness, brilliance, and coherence, we consider the 

implications for imaging three aspects of natural materials: their morphology down to the 

nanometer scale, their crystallinity, and their elemental content (including chemical states).  

High coherent flux sources open new horizons for all of these experiments in the x-ray 

imaging zoo; however, George Orwell reminds us that “all animals are equal, but some 

animals are more equal than others.”  Thus some experiments are limited in the size of object 

that can be studied, while others are much less so, to the point where we can contemplate 

nanoscale imaging of centimeter-sized specimens.  Radiation damage and specimen heating 

can limit what we can see, but with much variation depending on the type of sample, and the 

conditions we image it in. There may be a need for microscopes and detectors to catch up 

with the advancements in accelerators.  Where will this lead? Dennis Gabor (who received the 

Nobel Prize for developing holography as a coherent imaging method) provided a nice 

perspective: “the future cannot be predicted, but futures can be invented." 
 



 

 

Nannoconus: Analytical clue from past to future oceanic environments 
 

R. Chowdhury1, F. Giraud1, A. Fernandez-Martinez1, J. Cesar da-Silva2, A. Kulow2,  

R. Boudjehem2, JL. Hazemann2, J. Perez3, B. Suchéras-Marx4, G. Garbarino5 

 
1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France, 

2Univ. Grenoble Alpes, CNRS, Grenoble INP*, Institut Néel, 38000 Grenoble, France, 3SWING Beamline, 

Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France, 4Aix 

Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France, 5ESRF, 71 avenue des Martyrs, 

38043 Grenoble, France 

 

 

The oceanic system, a huge part of the hydrosphere and the Earth, contains more than a billion 

micro-organisms in each liter of water. Some of them, such as calcifying unicellular 

photosynthetic algae, have significant influence on the global carbon cycle. Apart from this, 

they are crucial for deciphering major changes in environmental oceanic conditions recorded in 

their calcified exoskeleton. These calcifying unicellular photosynthetic algae are particularly 

well-represented in the fossil marine record, as nannofossils (remains of their exoskeleton) from 

~ 210 million years. Thus, both physical and chemical characterization of such individual 

nannofossil will help to understand the factors controlling the past environmental oceanic 

conditions. This information can give keys for understanding present and future perturbations 

in the oceanic system. 

Here, we present an experiment on a set of extinct algal nannofossils (micrometric size), 

Nannoconus, the main photosynthetic bio-carbonate producers in 150 million years old oceans. 

The calcareous exoskeleton (5-30 μm) produced by the Nannoconus remained preserved in 

oceanic carbonate sediments. It is characterized by a conical shape with successive arrangement 

of calcitic plates (~100 nm in thickness) spanned around a central canal. Based on the 

differential shape, size and arrangement of the plates of the exoskeleton, there are 9 recognized 

morpho-groups that thrived in a time span of 50 million years. The detailed physical and 

chemical study of this skeletal calcite was non-existent to assign a link between the successful 

calcification and the changes in ocean chemistry. To better understand the link between the 

physical and chemical characterization of the Nannoconus and the changes in ocean conditions, 

we used the X-ray ptychographic computed tomography at the SWING beamline in SOLEIL, 

the French Synchrotron (June 2022). The experiment used nearly 1000 tomographic projections 

between 0° and 180° with a beam size of 5 μm and a step size of 1.5 μm for each ptychographic 

scan. This resulted in a very fine spatial resolution (~50-60 nm), useful for the quantitative 3D 

volume reconstruction and density analysis of the shell. The ongoing treatment of the results 

yielded the values of the electron density of the specimen, which can be used to obtain 

individual mass. This will help to decipher directly the composition the exoskeleton to 

nanometric variation and possible evolution of the size and weight over time. The direct and 

precise values of the mass will quantitatively add a value to what makes Nannoconus, an 

important pelagic bio-carbonate producers.  

Chemical analyses of the exoskeletal calcite of the Nannoconus, are planned at ID21 in the next 

semester. They will qualitatively indicate the paleo-environmental conditions.The mentioned 

time interval (~ 150-100 Million years) is indeed characterized by some major environmental 

perturbations i.e. in the global carbon cycle, and in the dissolve oxygen in seawater. Data from 

all these experiments are expected to give some clues concerning both the response and the 

adaptation of Nannoconus to the changing environmental conditions in the oceanic system. 



 

 

Porosity evolution during sustainable ironmaking with hydrogen probed by 

4D synchrotron X-ray nano-tomography 
 

Yan Ma1, Yen-Fan Wang1, Katrin Bugelnig2, Julie Villanova3, Guillermo Requena2,4, Dierk 

Raabe1  

 
1 Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany 

2 Institute of Materials Research, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany 

 3 ESRF-The European Synchrotron, 71, Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France 
4 Lehr- und Forschungsgebiet Metallische Strukturen und Werkstoffsysteme für die Luft- und Raumfahrt, 

RWTH Aachen University, 52062 Aachen, Germany 

 

 

Iron- and steelmaking cause more than 7% global CO2 emissions due to deploying carbon-

based substances (e.g., coal and coke) as reductants for iron ores, making it a key driver of 

global warming [1]. Fossil-fuel free ironmaking is indispensable for reducing these massive 

anthropogenic CO2 emissions. Hydrogen-based direct reduction (HyDR) is one of the most 

promising solutions to sustainable ironmaking. HyRD by nature is a multistep solid-gas 

reaction, involving several complex phenomena, such as non-volume conserving phase 

transformations, mass loss and transport, etc. [2,3] All these can lead to pore formation. 

However, a 2D post-mortem microstructural analysis is unsatisfactory to reveal the actual 

porosity, especially the connectivity of its networks. Yet, this information is crucial to better 

understand its role in the outbound mass transport of reduction product. In this study, we 

employed 4D synchrotron X-ray nano-tomography to characterize the porosity during HyDR 

of hematite. The time-resolved tomography scans showed the formation and evolution of the 

pores and their percolation features. The pore formation mechanism and the correlation between 

porosity evolution and reduction kinetics during HyDR are discussed. 
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Adsorption and desorption at mineral–water interfaces control the mobility and bioavailability 

of nutrients and toxic elements in natural environments. Understanding these interfacial 

processes can provide a direct insight into the reaction mechanisms. Obtaining this fundamental 

knowledge can largely benefit from our ability to observe adsorbed ion distributions at atomic 

level. In this presentation, I show how ion charge and hydration influence the speciation and 

dynamics of metal ions adsorbed at mineral–water interfaces based on in-situ observations 

using synchrotron-based high-resolution X-ray reflectivity [1,2]. I also highlight how these 

structures can be modified with varying solution composition and external environmental 

parameters [3]. These experimental observations are compared with computational simulations 

to provide a more detailed insight into molecular-scale behaviours in complex interfacial 

phenomena [3,4]. Finally, I discuss new opportunities and challenges for studies of the 

interfacial geochemistry using the high brilliance and coherence from the 4th generation source 

of X-rays. 
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The dissolution of rock-forming minerals is relevant to a broad range of topics in the area of 

geosciences and environmental sciences. The weathering of silicates controls atmospheric CO2 

over geological timescales and this process is currently being harnessed in the framework of 

carbon capture and storage strategies. The dissolution of minerals also controls the long-term 

production of inorganic nutrients and the release of metal contaminants at mining sites. 

Dissolution rates and associated fluxes are however difficult to predict, partly due to our 

incomplete understanding of the evolution of interfaces during dissolution. In particular, under 

certain conditions, the formation of Surface Alteration Layers (SALs) formed by interface-

coupled dissolution-reprecipitation at fluid/mineral interfaces may constitute a diffusion barrier 

impacting the overall dissolution process.  

 

A series of studies are outlined here, that aim at relating the properties of SALs to the dissolution 

rate of the underlying mineral. The textural and transport properties of SALs were probed in 

situ by combining Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) and X-Ray 

Reflectivity (XRR) measurements. The apparent diffusivity of SALs was determined by 

following the evolution of scattering length density profiles during tracer percolation 

experiments, while the atomic structure of these layers and the exact nature of the 

transformation associated with their formation was probed using in situ X-ray Pair Distribution 

Function analysis (PDF). 

 

Combined with the results of other in situ surface-sensitive techniques currently under 

development, these results shed light on molecular-scale processes underlying mineral 

dissolution rates observed at the macroscopic scale. 

 

 

 
 

Figure 1: Overview of the approach used in this study 
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The energy transition will shift the demand from fossil fuels to technology critical elements 

(TCEs) needed for the growing production of electric vehicles and their batteries, wind turbines, 

solar panels and kilometres of electricity grids. Consequently, by 2050, more metals will have 

to be extracted from the subsoil than have been extracted and consumed by mankind since its 

inception, and the waste associated with this industry will have to be managed: this can only be 

done if the associated risks and environmental impacts are controlled and the life cycle of these 

elements is optimised by minimising the outflow of the cycle and maximising recycling and 

recovery, while reducing the consumption of our energy resources [1].  

In addition to the huge amount of primary mining wastes produced each year, metallurgical 

refining and recycling of urban waste generates increasing volumes of residues containing 

sometimes even higher levels of TCEs compared to primary ores. These TCEs are encountered 

in complex mineralogical combinations in urban wastes such as e-wastes [2, 3], municipal solid 

waste incineration ashes, slags and sludge from metallurgy [4] and chemical industry residues 

such as spent catalysts. 

However, TCEs recovery from secondary resources can be a challenge. The variable TCEs 

content and complex mineralogical occurrence together with various materials often render 

conventional extraction processes such as pyrometallurgy unsuitable. Even if classical 

extraction methods applied to high-grade ores are often inefficient, in contrast 

(bio)hydrometallurgical extraction processes can be more suitable TCEs recovery methods for 

complex secondary resources. 

The elemental and mineralogical characterisation of secondary resources has been reported to 

be of high importance for unravelling the leaching and recovery mechanisms while optimizing 

the (bio)processes efficiency [4, 5]. X-ray Absorption Near Edge Spectroscopy (XANES) 

capable of detecting changes in oxidation state while Extended X-ray absorption fine structure 

(EXAFS) may provide information on the chemical environment and bond distances at macro- 

or micro-scales. Depending on the required particle size, other solid state characterisation 

techniques can be employed, including micro-fluorescence spectroscopy (μ-XRF) and X-ray 

diffraction powered by a high-energy X-ray source from a synchrotron radiation facility. 
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Phosphorite rocks are mined for the production of P fertilizers and contain rare earth elements 

(REEs, that include lanthanides and yttrium from ~200 to 20000 ppm) [1]. The latter are 

considered as critical metals essential for green technologies (magnets, catalysts, batteries) and 

their demand is growing exponentially. Consequently, phosphorite deposits are considered as 

an unconventional resource of REE, where co-valorization techniques are increasingly being 

considered [2]. This opportunity allows the sustainable and clean development of phosphate 

resources as well as involving it in the energy transition. Understanding the crystal chemistry 

of REEs in phosphorites is therefore a crucial aspect to decipher for the further development of 

effective co-recovery techniques.  

Thus, in order to make a robust contribution to this issue, we used the ESRF synchrotron 

radiation which benefits from the EBS upgrade at the BM23 beamline, to perform X-ray 

absorption at the yttrium K-edge on REE-diluted rock samples from the largest world-class 

phosphorite deposit in Morocco.  

Our study demonstrates that REEs are mainly hosted by the fluorapatite mineral. We also 

propose that their binding can be either i) a mixture of ~60% substituted in the Ca(2)-site and 

~40% adsorbed as an inner shell complex at the c-axis channel or, ii) a substitution in the Ca(2) 

site in a carbonated fluorapatite (francolite). Further in-situ µXAS analysis will determine 

which of the two assumptions is more appropriate. In both instances, our findings suggest that 

REEs are more recoverable than expected, either as an adsorbed fraction that can be efficiently 

desorbed, or as hosted in the easily leachable francolite mineral phase. 

 

 
 
Figure 1: Fluorapatite crystal structure showing potential Y speciation models, a) mixture of ~60% substituted in 

the Ca(2) site and ~40% adsorbed as an inner-shell complex, b) substituted in the Ca(2) site in a francolite 

 

 

References 

[1] - Emsbo, P., McLaughlin, P.I., Breit, G.N., du Bray, E.A., Koenig, A.E. Rare earth elements in sedimentary 

phosphate deposits: Solution to the global REE crisis? Gondwana Research 27, 776-785 (2015). 

[2] - Wu, S., Wang, L., Zhao, L., Zhang, P., El-Shall, H., Moudgil, B., Huang, X., Zhang, L. Recovery of rare 

earth elements from phosphate rock by hydrometallurgical processes – A critical review. Chemical Engineering 

Journal 335, 774-800 (2018). 



 

 

Elucidating the uptake and transformation of nanophases by plant leaves 
 

A. Avellan1, S. Rodrigues2, C. Larue3, G. Lowry4, S. M. Rodirgues2 

 
1CNRS-Géosciences Environnement Toulouse, France, 2Aveiro University, Portugal, 3CNRS-Laboratoire 

Ecologie Fonctionelle et Environnement, 3Carnegie Mellon University, USA 

 

 

The delivery of (micro)nutrients to crop plants through their leaves is an interesting strategy to 

decrease soil contamination and reduce agricultural inputs. Until now, foliar fertilization has 

not been widely used due to the low bioavailability of salts when deposited on leaves. In 

contrast, nanophases with the right physical-chemical properties can not only adhere to plant 

surfaces better, but they also can penetrate the plant leaf and reach various plant compartments. 

While nanophases could thus be an interesting tool to reduce the environmental impact of 

agricultural practices through a reduced wash-off, the fate of these particles after their foliar 

deposition still need to be elucidated. 

Our research aims to elucidate the mechanisms responsible for the uptake, transformation and 

mobility of nanophases in plants after their deposition on leaves. To study the journey of these 

nanophases, one need to address their cellular localization and associated transformations in 

hydrated tissues. In this presentation, we will discuss examples demonstrating how the use of 

synchrotron radiation and spatially resolved techniques has helped us to unravel these 

nanophase-plant interactions. 

 

 

 
 

Figure 1: X-ray fluorescence map collected on ID-21 at ESRF on hydrated, frozen cross-section of a pepper leaf 

one month after leaf deposition of ZnO NPs.  
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Green rust is a mixed valence layered iron mineral that often forms in ferruginous (i.e. Fe2+-

rich and oxygen-poor) environments. Due to its nanoparticulate nature and redox reactivity, it 

can influence the availability of nutrients and trace element, and the mobility of many 

contaminants (e.g., As, Cr) [1]. Among common iron minerals, green rust has one of the 

highest arsenic uptake capacities at circum-neutral pH conditions [2]. However, the 

mechanism and interdependencies between green rust and arsenic species, and their role in 

formation and transformation reactions in the subsurface, are still poorly understood. 

Combining high-resolution electron microscopy (S/TEM) and synchrotron-based X-ray 

spectroscopy and scattering techniques (XAS/PDF), we have shown that the oxidation state of 

arsenic highly affects its interaction with mixed valence iron minerals, and green rust in 

particular. Specifically, (i) As removal efficiency, (ii) As binding mechanism to green rust 

[3], (iii) green rust formation and transformation kinetics and (iv) the long-term stability of 

As-bearing iron minerals are all affected by As speciation [4]. Overall, our results provide 

new insights on iron mineral-metal interactions in anoxic environments, as well as its 

potential for mineral-based technologies for groundwater remediation. 

 

 
Figure 1: Investigation of green rust and arsenic species from micro- down to molecular scales using a 

combination of high resolution electron microscopy and synchrotron-based X-ray techniques. 
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Arsenic (As) is a toxic element, and elevated levels of geogenic As in drinking water pose a 

threat to the health of several hundred million people worldwide. In this study, we used 

microfluidics in combination with optical microscopy and spatially resolved X-ray 

spectroscopy to investigate zerovalent iron (ZVI) corrosion, secondary iron (Fe) phase 

formation, and As retention processes at the pore scale in ZVI-based water treatment filters. 

 

Two 250 μm thick microchannels, each filled with a single layer of quartz and ZVI grains were 

operated intermittently (12 h flow/12 h no-flow) with synthetic groundwater over 13 and 49 

days. During operation, we followed the corrosion of ZVI and the formation and transformation 

of Fe mineral phases with optical microscopy. After operation, the microchannels were resin-

embedded for analysis by synchrotron-based micro-focused X-ray fluorescence spectrometry 

(µ-XRF), X-ray absorption spectroscopy (µ-XAS), chemical imaging and full-field XAS to 

gain insights into the spatial distribution of Fe, As and other elements, the distribution of Fe 

mineral phases, and the redox speciation of As. 

 

Optical microscopy-based time-lapse movies provide novel insights into the highly dynamic 

mineral phase evolution in the filter pore space during operation. In combination with the 

synchrotron data collected after operation, the results show that intermittent filter operation 

leads to cyclic phase transformations between green rust and lepidocrocite and gradual 

formation of magnetite close to ZVI grains as longer-term host for As. The results also show 

that upstream P removal leads to downstream Ca-carbonate precipitation, which in turn can 

promote anoxic ZVI corrosion. The study thus highlights the complex spatiotemporal coupling 

of various geochemical processes in the pore space. The results from this work are not only of 

interest with respect to the optimization of ZVI-based drinking water treatment, but also with 

respect to the use of ZVI in groundwater remediation. 

 

Methodologically, this work shows that spatially and temporally resolved studies in 

micromodels can offer unprecedented insights into geochemical processes at the pore scale 

under conditions of kinetic and transport limitations. In the future, further advances in the study 

of geochemical processes at the pore scale can be achieved by combining micromodel 

experiments with in-situ spatially resolved synchrotron X-ray spectroscopies. 
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“Nanocrystalline manganese (oxy)hydroxides” (often referred to as “Mn oxides”) is a generic 

term for a large family of minerals having layered, tunnel, or compact structures [1]. Amongst 

them, layered structures, and more particularly vernadite (δ-MnO2; the nanocrystalline and 

disordered variation of birnessite), are certainly the most reactive form. Vernadite reactivity 

stems from its minute size (typically 10 nm in the layer plane and 2-3 nm perpendicular) and 

from its large layer charge, which is about 3 times higher than that of smectite [2]. As a result 

of this high reactivity, vernadite controls or influences the fate of several nutrients, metals, 

metalloids and actinides in oxic soils such as brown soils, in the water column of freshwaters, 

and in sediments, including sea floors. In addition, due to the potential coexistence in its 

structure of Mn2+, Mn3+, and Mn4+, vernadite is redox active, and can oxidize a large number 

of organic molecules, including pollutants [3].  

However, vernadite is observed to be unstable under certain environmental conditions and 

under certain structural variation. When unstable, vernadite tends to transform to tunnel 

structures with time, following a solid-state recrystallization and growth mechanism [4]. Upon 

transformation, chemical elements such as metals, initially adsorbed at vernadite surface, are 

susceptible of either being released in solution or incorporated in the resulting solid, with two 

antagonist effects about the mobility of the element that was initially adsorbed.  

Here, we will review the current state-of-the-art knowledge of vernadite crystal structure, of its 

evolution with time, and its impact on the mobility of both naturally occurring soil chemical 

elements and pollutants. In this view, the kinetics of trace elements uptake by vernadite and of 

solid-state transformation, which are particularly important to the understanding of uptake 

mechanisms in the critical zone, will be discussed. The long-term fate of vernadite, under 

slowly fluctuating redox conditions, will also be discussed, with the example of polymetallic 

nodules that are found on sea floors.  

Finally, the structural similarities between vernadite, clay minerals, and fougèrite (a layered 

mineral that is found for example in reductisols, where it controls the fate of anionic pollutants 

and nutrients [5]) will be discussed. The twofold aim will be to discuss how the experimental 

methodologies developed for a given mineral (e.g., synchrotron in-situ XRD, PDF, XAS, and 

X-ray computed diffraction tomography) can be transposed to an another, and how the 

combined study of the different soil layered minerals may provide insights into the geochemical 

cycles of elements, including pollutants.   
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The Great Barrier Reef is the biggest and most complex reef ecosystem in the world. It 

represents 10 percent of the world’s coral reef ecosystems by area. Due to warmer seas leading 

to coral bleaching and the impact of human pollution, more than half of the coral has been lost. 

Understanding the changes in structure of the corals during the bleaching process is essential 

to find solutions against it. This talk shows the first results from this study performed at the 

ID21 beamline of the ESRF [1]. 

 

This study is focused on the correlation between the mineralogical, geochemical and microbial 

characteristics of sediments and (mineralised) corals from the Low Isles reef near Port Douglas. 

By characterizing the minerals present in the corals, we show how susceptible certain corals are 

to acidification form the rising sea temperatures. Some oxalates such as the rare mineral 

weddellite (Ca(C2O4)·(2.5-x)H2O) are less resilient than aragonite or high-Mg calcite. 

Associating the different phases in the Ca–C–O system with the levels of weathering is crucial 

to the understanding future damage. µXRF synchrotron mapping helped us to identify the 

distribution and concentration of critical elements (from Si to Ca) which were used as target 

zones to see differences between the Ca K-edge µXANES signals. Differences between 

phosphorus and potassium hot-spots from bleached and non-bleached corals shows that 

contamination from fertilizer run-off from land-based agriculture results in changes to the trace 

element signatures in coral. 

 

 
 

Figure 1: Workflow from sample to data of the Ca Coral experiment at ID21. 
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The accumulation of the potentially toxic metal cadmium (Cd) in cacao beans has recently 

become a subject of intense research after the European Union and the Codex Alimentarius 

lowered its legal limits in chocolate. The research on strategies to reduce cadmium (Cd) 

accumulation in cacao beans is currently limited by a lack of understanding of the Cd transfer 

pathways within the cacao tree 1. The study of samples at environmental Cd concentrations is 

challenging because of the low Cd content (a few mg kg-1 dw). Here, we studied the transfer 

of Cd from soil to the nib in a high Cd accumulating cacao cultivar by analyzing total elemental 

concentrations, Cd stable isotope fractionation, Cd speciation and localization. The plant Cd 

concentrations were 10-28 higher than the topsoil Cd concentrations. The largest fraction (57%) 

of total plant Cd was present in the branches where it was primarily bound to carboxyl-ligands 

(60-100%) and mainly localized in the phloem rays and phelloderm of the bark. Cadmium in 

the nibs was mainly bound to oxygen ligands (60-90%), with phytate as the most plausible 

ligand. A scheme of Cd pathway from roots to nib was proposed, and compared with other 

species. This study extended the limited knowledge on Cd accumulation in perennial, woody 

crops and revealed that the Cd pathway is markedly different than in annual crops, which has 

implications for mitigation strategies 2. 
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The conversion of tropical forest for cassava cultivation is known to decrease soil organic 

carbon (OC) and nutrient contents of highly weathered soils in the tropics. Amazonian Dark 

Earth (ADE) may be resistant to this degradation because of their historical anthropogenic 

amelioration leading to higher soil OC and P concentrations. In this study, we assessed the 

effect of land use change on OC dynamics under tropical conditions and how this is related with 

P distribution at the microscale. We analyzed ADE and an adjacent Acrisol from Manaus 

(Brazil), both under forest and cassava plantation. The land use change induced a decrease of 

OC related to both particulate and mineral-associated organic carbon. Simultaneously the P 

content decreased by approximately 80% by land use change, whereas the relative proportion 

of organic P increased. This indicates a legacy effect of anthropogenic amelioration in the ADE 

for P but not for OC. Land use change tightened the OC-P relations in the mineral-associated 

OC fractions, which was also reflected at the microscale. Using NanoSIMS we found µm-sized 

P hotspots that were more co-localized with OC-dominated areas by land use change. 

Correlative measurements with synchotron-based µ-XRF and µ-XANES demonstrate a high 

spatial heterogeneity of different P species. A short-term incubation experiment with 13C 

glucose showed a delayed and lower respiration through land use change. In our contribution, 

we will discuss distinct C and P interactions in microscale compartments and how these respond 

to land use change in highly weathered tropical soils. 
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The geochemical behavior of redox-sensitive trace metal rhenium (Re) has been postulated to 

record information about the extent of low oxygen depositional conditions in the oceans. In the 

modern oxygenated ocean, Re speciation is dominated by the geochemically inert perrhenate 

Re(VII)O4
– anion at concentrations of ∼40 pM 1. Within oxygenated (pore)water, Re 

monovalent oxyanion does not react directly with Al/Fe/Mn oxyhydroxides, clay materials, or 

particulate humic substances 2,3. The highest levels of Re are found in sulfide-rich euxinic 

settings, where concentrations of hundreds of ppb give this trace element the highest level of 

enrichment found in black shales 4. Indeed, in the presence of sulfide, the oxyanion Re(VII)O4
– 

undo transformation via substitution of the oxyanion O atoms by S atoms, forming 

thioperrhenate species (Re(VII)O4-xSx
–) in a similar way to Mo 5. Understanding this reaction 

is further required to extract and/or recycle Rhenium, a rare critical metal fundamental in high-

tech products and emerging innovations industries, with limited possible substitution 6. This 

element is mainly used in high-temperature superalloys to manufacture turbine blades for jet 

engines, in power generation applications, and platinum-rhenium catalysts in the petrochemical 

industry. 

 

Our study aims to identify and follow for the first time with XAS spectroscopy the 

thioperrhenate species during Re thiolation and, subsequently, the steps leading to the formation 

of ReIVS2(S) or Re2S7(s) particles. This study aims to shed new light on the regulation of Re 

deposition in sulfide environments, to contribute to the development of improved mining and 

recycling methods, and to open the way for the use of Re as a chemical reporter. 
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HiP-CT on BM18 enables acquisition of large 3D multi-scale data sets of human organs in 

increasingly shorter times [1]. These datasets have great potential utility to the physiology, 

clinical imaging fields, but key to unlocking the potential are generalisable machine learning 

(ML) approaches to automate image segmentation. A major obstacle to developing these ML 

algorithms is the lack of sufficient high-quality ground-truth data [2]. 

Gold Standard or ground-truth segmentations should ideally be produced through 

segmentations and proof-reading stages by multiple experts. There are several challenges to 

this: i) As HiP-CT is a new technique there remain a shortage of experts; ii) HiP-CT data sets 

are large and the experts do not necessarily have access to the computational infrastructure 

needed to perform the segmentations. iii) Segmentations are laborious limiting the amount of 

time a single annotator can spend on the task before performance drops.  

We present the current process of creating HiP-CT gold-standard segmentations, the challenges 

still faced and the efficacy of each method in terms of the dataset size created, the success in its 

use as a training dataset for machine learning and the time it took to create the dataset.    

 
Figure 1: The pipeline for the creation of gold standard training data 
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The fatal trajectory of pulmonary COVID-19 isdriven by lobular ischemia 

and fibrotic remodelling 
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COVID-19 pneumonia revealed perivascular inflammation, an endothelial injury, 

microangiopathy, and an aberrant blood vessel neoformation by intussusceptive angiogenesis. 

The pathomechanism by which SARS-CoV2 causes the fatal trajectory of pulmonary pathology 

COVID-19 still remains vague.  We studied a total of 85 lungs (COVID autopsy ; influenza A; 

ILD explants; healthy controls) using the highest resolution Synchrotron radiation-based 

hierarchical phase-contrast tomography, scanning electron microscopy of microvascular 

corrosion casts, IHC, MALDI-TOF, and analysis of mRNA expression and biological 

pathways. Plasma samples from all disease groups were used for liquid biomarker 

determination using ELISA. The observed mosaic appearance of COVID-19 in conventional 

lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The 

length of hospitalization was associated with increased intussusceptive angiogenesis. This was 

associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular 

profiling and metabolomics.  Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, 

GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. Pulmonary severe 

COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, 

resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-

COVID. 

 
Figure 1: With the help of synchrotron-based hierarchical phase-contrast tomography (HiP-CT), a mosaic-like 

hypoxic undersupply of the smallest functional unit of the in severe COVID-19 lungs, the lung lobules, could be 

shown for the first time. This hypoxia and vascular damage caused by the SARS-CoV-2 virus leads to excessive 

formation of new blood vessels, so-called intussusceptive angiogenesis, which leads to scarring and fibrosis of the 

lung tissue in a very short time via inflammatory processes.  In order to identify potential therapeutic targets or 

progression biomarkers, blood serum and biopsy tissue from patients with different COVID-19 progressions, 

pulmonary fibrosis (IPF) and acute lung injury (ARDS) were analysed and validated in a broad screening approach 

using proteomics and metabolomics. Three matricellular biomarkers and one macrophage-derived biomarker were 

identified as predictive blood-biomarkers that predict the progression of the scarring process. 
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Background. Several anatomical issues remain unresolved with the current resources of study. 

Myocardial architecture has been debated concerning the three-dimensional orientation of the 

cardiomyocytes [1]. Another example relates to the perivascular spaces of the spleen, which 

has been little studied despite their clinical role in post-traumatic haemorrhage [2]. Through 

these two examples, we can show the contribution of the hierarchical phase-contrast 

tomography to the anatomical study. 

Methods. Organs were obtained from two bodies donated to the LADAF. After evisceration, 

organs were post-fixed before being mounted with agar-agar ethanol gel preparation. After 

degassing, the imaging was performed at the ESRF (BM05 and BM18 beamlines) with scans 

at 2, 6.5, and 25 μm per voxel [3]. Three-dimensional reconstructions were obtained by manual 

virtual segmentation using ITK-SNAP Software.  

Results. The imaging used enabled us to explore the myocardial architecture by visualizing the 

fascicles. At first sight, myocardium seemed to be organised as a homogenous continuum, in 

which every cardiomyocyte sets up in irregular fascicles. These fascicles were aligned in series 

and coupled to each other through multiple offsprings, the overall meshwork being supported 

by a matrix of connective tissue. The acute margin of the heart is mainly composed of 

circumferential fascicles that reach the diaphragmatic part of the heart. Regarding the spleen, 

we compared its perivascular architecture with that of the kidney, traumatized or not. Unlike 

the kidney, the spleen appeared to have a space. A double mesh structure was seen with 

myocytes in the connective tissue surrounding the organ. Medium and small calibre vessels 

were surrounded by a sheath going deep into the spleen which may explain the non-diffusion 

of the haemorrhage in the spleen. 

Conclusion. This anatomical descriptive report was based on a high-resolution, non destructive 

approach through synchrotron X-ray imaging of ex-vivo human organs. We prove that this 

imaging technique allows the assessment of detailed micro-anatomy by addressing previously 

unresolved issues, i.e. the myocardial organisation with a questioning of the prevailing theories 

and the peri-vascular spleen organisation with a potential explanation of a misunderstood 

clinical event. 
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Cinematic Visualization: From Organs to Cells and Physiology 
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The Cinematic Rendering technology [1] introduces photorealistic 3-dimensional medical 

imaging to the development of next generation medical research imaging technologies and 

helps to bridge the gap between macroscopic and microscopic imaging modalities. In doing 

so, the technology is fostering research that will create a foundation for completely new 

approaches to teaching [3], patient communication and surgery planning. 

 

 
Figure 1: Upper left: FAPI-PET CT visualization allows to differentiate fibrotic from inflammatory processes, 

Upper right: overview-scan of Hip-CT data from ESRF with zooms into details (lower images). 

 

Handling and visualizing terabyte scale volume data on standard PCs is an enormous challenge. 

It can be tackled by using out-of-core multi-resolution volume rendering technologies such as 

CERA-TVR[2]. Combining Cinematic Rendering and out-of-core multi-resolution rendering 

technologies with novel next generation imaging technologies facilitates the creation of human 

anatomical atlases, allowing zooms from a full body view to organ systems and organs to the 

cellular and physiological level. This will leverage the understanding of the human anatomy 

and physiological processes for researchers, practitioners, and everyone. This talk will 

introduce these technologies and present results with the latest Hip-CT organ data from the 

ESRF. 
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The year 2022 marks the inauguration of the world’s first industrial tomography beamline for large objects. 

An offspring of the recent upgrade towards the Extremely Bright Source (EBS), the BM18 beamline was 

expressly designed for making use of the beam coherence, size and high-energy flux [1,2]. The source being 

a three-pole wiggler in a vertically low beta-section emits a horizontally broad X-ray beam comprising 

usable photon energies up to 400keV. Thanks to the exceptionally small source (10µm) and the resulting 

partial spatial coherence it is convenient to set the source-to-object distance to 180m. At this position the 

horizontal beam size is 300mm wide, favoring pixel sizes up to 25µm which lead in turn to the development 

of a novel large area detector design (LAD). For fully realizing propagation-based polychromatic phase 

contrast, the experimental hutch extends 40m along the beam axis. A motorized slide hosting 9 indirect X-

ray detectors with different optics, hence different pixel sampling (from 0.6µm to 42µm) allows for setting 

the object-to-detector distance  continuously between 4m and 36m. The current sCMOS cameras feature 

2048² pixels resulting in CT slices of 3680² voxels if field-of-view extension by half scanning is used. The 

development of the LAD in particular leads to much larger slices: 27.500², hence 1.4Gb/slice in uint16 

format (again, field-of-view extension by half scanning is used). For these slices, fast hierarchical back-

projection (HBP) was implemented on GPU-workstations thus keeping pace with the camera’s high frame 

rate of 100fps. Following this development, a novel open and “virtually lossless” compressed data format 

is being developed which will grant the users approx. 12x compression rates as well as local decompression 

and visualization for accessing and storing these gigantic volume images. 

During first explorative experimental campaigns, a large variety of industrial objects were scanned. In many 

cases, 42µm voxel size were used for obtaining an overview over the entire object, followed by a series of 

region-of-interest scans of decreasing voxel size, if required down to 0.6µm/voxel (i.e. resolving the fibers 

in carbon composites or the Nickel-Lithium-Manganese-Oxide particles in Li-ion pouch cells). Results of 

these explorative campaigns not only revealed that synchrotron CT on BM18 is much surpassing laboratory 

high-energy CT in terms of contrast and spatial resolution, but BM18 is also outperforming other 

synchrotron beamlines in these categories thanks to its exceptionally strong propagation-based phase 

contrast. The sequential acquisition of region-of-interest scans of decreasing voxel sizes has been developed 

recently during the investigation of pathological lungs (Covid research) and Human-Organ-Atlas (HOA) 

project. This mode is referred to as Hierarchical Phase-Contrast imaging [1]. Part of the ongoing BM18 

project which is funded by the German Federal Ministry of Education and Science (BMBF) under the grant 

title “05E2019”, is dedicated at further developing the interactive choice and visualization of the scanned 

regions within larger objects. 

In conclusion, the BM18 project, which is still ongoing, being 

the world’s first, partially coherent tomography beamline for 

scanning large industrial (and of course scientific) objects, will 

achieve several milestone developments. Firstly, a large area 

detector which may produce 1.4Gb CT slices. Secondly, the 

semi-automated acquisition of Hierarchical Phase-Contrast scans 

reaching down to 0.6µm sampling and thirdly, a novel, 

compressed, virtually lossless data format which guarantees the 

easy access and handling of the extremely large volume images. 
Figure 1: Synchrotron CT scan of a high-grade 

mechanical wrist watch (18.5µm/voxel). 
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Tomography has become a key characterization technique in nearly all industry sectors. In 

many cases it is now fully integrated in R&D processes and control procedures. At the interface 

between the synchrotron facilities and industry, Novitom is acting, hand to hand with ESRF, to 

provide ready-to-use results by operating world-class performance tomography beamlines such 

as BM05 or ID19.  

With the new outstanding capabilities of BM18 beamline, the realm of possibilities has been 

expanded. Industrial applications will directly benefit from the high quality of tomography 

images thanks to improved phase contrast and from the possibility to image large samples at 

high energy and great resolution.  

BM18 was used by Novitom over the past year to provide answers to industry collaborators in 

fields with significant societal impact, particularly in the areas of energy, pharmaceuticals, and 

medicine. Although many of these projects are subject to confidentiality, some examples can be 

shared and will be presented. Important technical demands for industrial applications will also 

be presented such as reproducibility, high throughput capabilities ... Finally, the results obtained 

from a synchrotron tomography simulation software developed by Novitom (Novi-Sim) to 

simulate BM18 data collection pipeline and how it can be used both for acquisition parameters 

optimization and data analysis will also be presented.   
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Li-ion batteries have transformed modern life through their ubiquitous application in consumer 

electronics. Indeed, the revolution in mobile computing would not have been possible without 

the lithium battery which has consistently delivered improvements in energy and power density 

commensurate with demands for shorter charge times, and longer battery life for increasingly 

power-hungry consumer electronics applications. In the future, advanced batteries promise to 

have an increasing role in our lives, spanning mW to MW applications, with use cases as diverse 

as medical implants, grid-scale storage, automotive powertrains and short haul flight.  In the 

near to medium-term, it is the Li-ion battery that will meet these requirements, however, with 

increasingly demanding applications, and diminishing returns in battery performance 

roadmaps, a range of key challenges persist. This motivates characterization and modelling that 

is both multi length- and multi-time scale with in-situ/operando capabilities.  

Multi-scale imaging is required to describe particle, electrode and cell architectures, and 

effectively couple information on the material morphology, with electrochemistry and 

crystallography. X-ray methods are uniquely flexible in their non-destructive and penetrative 

nature and operate effectively across multiple spatial and temporal domains.  

Our previous works have effectively demonstrated the capacity to utilise 3D X-ray tomography 

to image particles, electrodes and cells; however, it is notable that to date these investigations 

have been largely siloed at each discrete length scale. A continuum understanding of the 

constituent materials, cells and packs is required and there is an emerging ‘pipeline’ for multi-

scale X-ray imaging, from the particle (using nano- and  micro-CT) to the cell level (using 

macro-CT), and to correlate the morphology of materials, and architecture of cells to key 

performance and lifetime metrics.  

With the growing industry trend towards larger format cells, there is an opportunity to use  novel 

scanning approaches, including laminography and hierarchical tomography (with extreme 

region of interest and phase contrast) to assess features buried within large format devices. The 

latter has been recently demonstrated for imaging full organs from Covid infected patients and 

has achieved remarkable results in imaging high resolution features buried within macroscopic 

samples. The same approach for battery science and to visualise electrode level morphological 

features inside extremely large samples would prove transformative to battery science and 

engineering, informing new scientific understanding alongside evaluating new cell design and control 

strategies.  

 

 

 

 

 

 

 
Figure 1: Multi-scale imaging of the cell 

architecture (a,b) electrode morphology (c,e) and 

non-active materials (d) which can be effectively 

registered and super-imposed (f) to combine multi-

scale data (image from X. Lu et al, Nature Comms). 
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Giant anuran species express a morphology with hyper ossification, a large head (which impacts 

the distance between the inner and outer ear), and a larynx that may be as long as the head as, for 

example, in Pipa pipa. There is currently no theoretical model that can explain the variety of changes 

in form and function observed with increasing size. Nevertheless, studies on the physiology of body 

size [1-3], the evolution of body size [4], size and functional morphology [5], and a general 

theoretical model [6] show the importance of body size as a biological variable. These animals reach 

their large size and yet do not have extremely low song frequencies if one follows a linear regression 

of song frequency against size. On the contrary, they have song frequencies for communication 

equivalent to species between 5 and 10 times their size. The objective of this study is twofold: 1. 

how did their vocal system (lung, larynx, oral cavity) evolve? 2. How did their ears develop and 

how are they adapted to achieve accurate sound source localization, at frequencies equivalent to 

species 5 to 10 times their size? For comparison, humans can resolve a maximum interaural delay 

for an average DTI of 800 µs [1]. Acoustic communication is an evolutionarily important trait as it 

is crucial for courtship behavior and thus for reproduction [7]. We aim to identify and quantify in 

detail the cartilage, tympanic membrane, bone, and musculature of structures related to sound 

reception. The definition of the biomechanical properties of the tissues by MDT and the precise 

morpho-anatomy of the organs have shed light on the understanding of the functioning of sound 

reception in vertebrates. In frogs (7500 species), a few tympanic middle ear models have been 

reconstructed in 3D for detailed functional analysis. This study on BM18 allowed us to reconstruct 

3D models of giant frogs to explain the various morphologies of the ear from a biomechanical and 

evolutionary point of view. Specimens were scanned in a 9 to 18 cm field of view with a voxel size 

of 25 and 42 μm respectively and in phase contrast using techniques developed through the UCL 

and ESRF beamtimes md1252/90 funded in part by grant number 2020-225394 from the Chan 

Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation., and grant 

number CZIF2021-006424 from the Chan Zuckerberg Initiative Foundation [8]. This method on 

BM18 enabled us to have realistic models which would be used to make physical simulations in 

order to test hypotheses on the auditory system.  
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Even before the refurbishment, ESRF was unrivalled as a tomographic facility for fossils 

because of its unique ability to perform propagation phase contrast synchrotron 

microtomography (PPC-SRμCT) on relatively large specimens [1]. These scans were carried 

out principally at beamline ID19. However, the construction of the dedicated tomography 

beamline BM18 has raised these capabilities to an entirely new level, in terms of the 

maximum size of specimen that can be accommodated, the ability to perform multi-scale 

scans without remounting the specimen, and the propagation distances that can be achieved. 

As an illustration of its performance, I present here ongoing work on the pelvic region of the 

near-tetrapod Elpistostege, based on a series of scans made at BM18 in September 2022. 

Elpistostege is a member of the Elpistostegalia, a small group of Devonian fossil fishes that 

form the immediate sister group to tetrapods (land vertebrates) and are thus potentially 

informative about the beginning of the fish-tetrapod transition. The single most informative 

elpistostegalian fossil is a near-complete Elpistostege from Miguasha, Quebec, Canada [2], 

which I am studying in collaboration with Richard Cloutier (Université de Quebec a 

Rimouski) and Vincent Fernandez (ESRF). We have been scanning a block from the pelvic 

region, approximately 25 cm long, which contains the pelvic fins and well-preserved contents 

of the hindgut. The results will thus allow us to investigate both the locomotory morphology 

and the diet of this important fossil. The scans, done at three different resolutions without 

remounting the specimen, are of very high quality and allow for easy segmentation of the 

anatomy. The outer surface of the squamation, which has been hidden in the rock because the 

specimen is split through the body, can be visualised for the first time and reveals unexpected 

regionalisation. The pelvic fin skeletons can be 'dissected' out from overlying scales on the 

basis of microanatomical differences, and the contents of the gut can be itemised. These 

capabilities greatly increase the information we can extract from Elpistostege, and open the 

door to a new approach to studying large vertebrate fossils. 
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Mammals are descended from reptilian-looking ancestors, often referred to as the "mammal-

like reptiles", which dominated the Earth millions of years before the dinosaurs. For a long 

time, it has been believed that these "mammal-like reptiles" were primitive: they had unrefined 

sense organs, a small brain, simple behaviour and were cold-blooded (ectothermy). In the last 

10 years, however, synchrotron and lab CT studies of dozens of fossils have demonstrated that 

their biology and physiology were not so simple.  

 

Recent research on the previously out-of-reach fossil evidence and internal neurological 

structures of "mammal-like reptiles" supports that modern behaviour such as parental care, 

burrowing and gregariousness, and the presence of defining mammalian traits such as whiskers, 

an enlarged brain and warm-bloodedness (endothermy) had already evolved in this lineage well 

before it gave birth to mammals.  

 

So far, these works were conducted on a selected sample of relatively small fossils, thus limiting 

the scope of these results. But as they dominated terrestrial ecosystems, "mammal-like reptiles" 

often reached body sizes that rivaled those of the largest terrestrial mammals, making their CT 

study challenging. We hope that the new BM18 will provide data about these overlooked large 

animals (for the first time, non-destructively) and help unravel the exciting complexity of 

"mammal-like reptiles" biology, physiology and behavioural diversity.   
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Being natural hazards or societal challenges, geosciences addresses vital yet natural 

(subsequently complex) phenomena. Where the geological community used opaque autoclaves 

to reproduce Earth conditions of pressure and temperature, the synchrotron directly observes 

the studied processes. With the recent EBS of ESRF, new capabilities are unlocked in terms of 

scanning speed or apparatuses thickness, allowing us to explore larger samples at greater 

depths. We develop on beamline BM18 several samples environments capable of reproducing 

either pressure, temperature or fluid flow encountered in the Earth’s crust's first kilometres. 

These environments aim to provide the first quantitative laboratory for geological problematics. 

Today's discussion illustrates direct applications of this new fleet of geo-devices with an 

example for earthquake mitigation, volcanic hazards and CO2 storage. 

In volcanic structures, flow or blow are the two primary outcomes. When the magma viscosity 

can no longer diffuse the excess pressure fast enough, the magma shatters, and its previously 

flowing behaviour transforms into catastrophic explosions. A high-temperature furnace is under 

test to understand the complex three-phase rheology interaction of flowing magmas. Ultimately 

coupling decompression and temperature will allow us to investigate the whole spectrum of 

volcanic dynamics. Still, the gas phase interaction and network development already provide 

critical insight into magmatic ascent and dynamics.  

The second setup presented investigates rock permeability and fluid flow under reservoir 

conditions. Today, relieving the carbon dioxide which saturates our atmosphere and aggravates 

the ongoing climate change is a priority. Therefore, a few large-scale initiatives attempt to 

capture atmospheric CO2 to inject it into the ground and turn it into rocks. Again, the ESRF 

may help understand this chemical reaction and improve its efficiency. Preliminary tests are 

performed on potential rock candidates to understand their structure, properties and how the 

saturated CO2 fluids interact with them.  

Finally, regarding the earthquake mechanisms, the principal investigator, François Renard, 

obtained a competitive European Research Council (ERC) Advanced Grant "Break through 

rocks" for 2022-2026. It allowed the development of the tri-axial press ‘Zeus’. A transparent 

device capable of recording acoustic emissions produced during the rupture of rocks while 

imaging rock integrity. Deformation in the Earth’s crust localises onto faults that may rupture 

rapidly, producing earthquakes, or undergo slow aseismic slip that may or may not accelerate 

into a coseismic slip. However, the detailed mechanisms that control the transition between the 

seismic and aseismic regimes and the onset of earthquakes remain unknown. Zeus, acquiring 

simultaneously dynamic synchrotron X-ray microtomography and acoustic emission, will 

generate novel experimental techniques that allow us to separate the aseismic and seismic 

deformation components. The data will reveal how slow and fast deformation processes 

develop and interact with each other in dry and wet crustal rocks under stress, fluid pressure, 

and temperature conditions at depths up to 10 km and characterise fracture network 

development during earthquake nucleation and rupture propagation. 
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Additive manufacturing of metallic alloys is nowadays heavily investigated by the academic 

and the industrial community. Nevertheless many process parameters can affect the soundness 

of the built parts. The resulting mechanical performances are driven by features at entangled 

characteristic scales (microstructure, melt pool, layer, struts, part…).   Multi-scales 3D 

characterizations, in situ or post-mortem, are valuable to undisclose defects genesis and to drive 

the optimisation of the process. 

 At the scale of the melt pool, the microstructure can be highly heterogeneous with a 

complex 3D ordering of equiaxed and columnar grains. A fine 3D characterization resolved 

enough to describe the grains shape and size but covering a field of view large enough to capture 

a complete melt pool profile enable to enravel the complexity of the microstructure. ID16B is 

particularly suitable for this purpose with multi-scale in situ nano-tomography experiments [1].   

 At the scale of the part, the high X-ray attenuation induced by high temperature 

applications alloys (such as Ni based superalloys) and the size of the built parts (several tens of 

centimeters) makes X-ray imaging impossible on a standard tomography beamline. The 

potential of BM18 for such application is revealed with few preliminary acquisitions. 

 At intermediate scale (the scale of the strut, the scale of a bulk portion, the scale of a 

few adjacent and stacked melt tracks), a comprehensive view on defect formation and healing 

is seek for. Complementary to radioscopy observations on 2D builds, an additive manufacturing 

replicator compatible with X-ray micro-tomography [2,3] enables to image in operando the 

building process of small 3D parts (cubes, small lattices…) as exemplified  with acquisitions 

conducted on BM05.        

 The long term project MA4928 : Correlative Imaging for Additive Manufacturing of 

Metallic Materials (CIAM3), encompasses all these scales. This LTP, shared between ID16B 

and BM18, aims at offering a multiscale characterisation suitable for the investigation of 

metallic additive manufacturing. It consists in a dual strategy : 

(i) an experimental strategy combining and linking in situ tests at several scales: In situ tests 

cover a wide range of the sub process involved in the investigated AM technologies and 

scientific cases : constrained sintering, 3D printing, mechanical properties characterization;  

(ii) a numerical strategy based on trained Artificial Intelligence (AI) algorithms: they will allow 

performing automatic data reduction, acquisition with lower number of projections, automatic 

noise and artefact removal. Spatial resolution of low resolution reconstruction would be 

increased thanks to training on high resolution acquisitions. The ability to recover high 

resolution information on low resolution acquisitions would allow to significantly increase the 

ROI/feature size ratio. 
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Proton exchange membrane fuel cell (PEMFC) powered vehicles are a promising alternative to 

combustion engines in the heavy-duty sector. For such applications extended lifetimes of the 

electrocatalysts are required. To study the degradation behavior of PEMFC catalysts typically 

accelerated stress tests (ASTs), simulating driving conditions are applied and the response of 

the catalyst is investigated. Local methods such identical location transmission electron 

microscopy (IL-TEM) provide information of the degradation on a local scale1, however, often 

several different degradation mechanisms occur. To investigate the overall behavior of the 

catalysts, therefore integrative methods such as small- and wide-angle scattering (SAXS and 

WAXS) are preferred. Furthermore, these techniques can be applied operando, i.e., during the 

AST. In the presentation, I will present our work on operando SAXS/WAXS degradation 

studies2,3 and highlight advantages, but also the challenges in coupling these techniques to 

electrocatalytic measurements. 
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Water oxidation photoanodes based on earth-abundant metal oxide semiconductors are actively 

studied due to their limited environmental impact, the stability to photo-corrosion and the 

tunable optoelectronic properties [1]. BiVO4/WO3 heterostructures are now emerging as one of 

the most promising photoanode, but the activity is limited by surface recombination and 

sluggish charge transfer kinetics. Cobalt-iron mixed compounds, such as CoFeOx and CoFe 

hexacyanoferrate, a Prussian blue analogue, proved to effectively enhance photocurrent when 

coupled to BiVO4/WO3 photoanodes as water oxidation co-catalyst. The origin of the increased 

efficiency is still debated, but recent studies suggest an enhancement of charge separation 

efficiency within the semiconductor [2], rather than improved water oxidation kinetics, 

underlying possible charge accumulation on the co-catalyst leading to transient modification of 

the local structure. To achieve a thorough understanding of the semiconductor and catalyst 

structure in the actual PEC operating conditions, a custom cell was specifically designed to 

allow for XAFS analysis with a thin electrolyte layer (<100 𝜇m) in continuous flow, preventing 

bubbles formation and enhancing mass transfer (Fig 1a). The effect of sunlight-equivalent 

illumination and bias, fully integrated with the beamline apparatus (LISA BM-08) and remotely 

controlled, was investigated by either performing fixed potential spectroscopy (Fig 1b), or fixed 

X-ray energy absorption voltammograms [3] (FEXRAV, Fig 1c). A tailored algorithm for 

point-by-point spectral acquisition triggering light stimulus was also implemented to achieve 

time-gated acquisition and compensate drifts in the acquisition setup over long-term 

measurements. The resulting characterization displayed a drastic modification of the structure 

between operando and ex-situ analysis, as well as a dependence on bias and illumination, further 

investigated by EXAFS analysis. 

 

 
 

Figure 1: a) 3D-printed custom PEC cell scheme; b) fixed potential XAS spectra in dark/light conditions at Co 

K-edge; c) FEXRAV @7719.5eV in dark/light conditions. 
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Figure 1: X-ray intensity and electrochemical 

current density during potential cycles on 

Pt(111) a, and Pt(100) b, with 20 mV/s. Oxide 

formation is indicated by the decrease of the 

intensity at about 1 V. c, Illustration of the 

surface oxide on Pt(100) [4]. d, STM image of 

the Pt nanoislands grown on Pt(100) after 50 

ox./red. cycles to 1.62 V.  
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The need for sustainable energy, reduction of pollutants, and the environmental benign 

processing of chemicals has spurred worldwide scientific activities in electrochemical energy 

science and electrocatalysis. These processes occur at the interfaces of solid catalyst materials 

in contact with complex liquid environments and under conditions involving high reaction 

rates, pronounced mass transport, and vigorous gas evolution. We here describe high-energy 

X-ray scattering methods for in situ and in operando studies that provide insight into the 

complex interfaces between electrocatalysts and liquid electrolytes under reaction conditions. 

The application of these methods is demonstrated for the case of electrochemical Pt surface 

oxidation, which is of key importance for the development of durable oxygen reduction 

reaction catalysts as used in low temperature fuel cells. In this process, the formation of an 

ultra-thin oxide film on the electrode surface is causing atomic-scale restructuring and Pt 

dissolution, which promotes the degradation of the Pt catalyst.  

By High Energy Surface X-ray Diffraction measurements at ID31 of the ESRF and P21.2 of 

PETRA III, we analysed the atomic-scale surface structure of Pt(111) and Pt(100) during 

oxide formation and reduction in 0.1 M HClO4 and 0.1 M H2SO4 [1]. These surfaces exhibit 

distinct differences in stability versus restructuring after potential cycles to the same upper 

potential limit (Fig. 1a, b). To elucidate this difference we performed a detailed analysis of the 

crystal truncation rods at different potentials from the onset of oxide formation up to the onset 

of oxygen evolution to determine the location and potential-dependent coverage of the Pt 

atoms in the oxide. This revealed distinct differences in oxide growth mechanism on Pt(111) 

and Pt(100) which explain the differences in structural stability. Repeated surface oxidation 

and reduction leads to growth of Pt nanoislands (Fig. 1d), which were studied using Grazing 

Incidence Small Angle X-ray Scattering. The island growth was analysed as a function of 

oxidation potential, number of potential cycles and surface structure, indicating a qualitatively 

similar changes of the nanoscale morphology but distinct differences in the quantitative 

roughness evolution. 
This work was funded by the Deutsche Forschungs-

gemeinschaft via grant 418603497 and the BMBF 

via project 05K19FK3. 
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The relationship between surface strain and the rate of a (electro)catalytic reaction was 
unveiled by Hammer and Nørskov using density functional theory (DFT) calculations [1,2]. 
They proposed that the rate of the sluggish oxygen reduction reaction (ORR) would be 
enhanced on Pt-based catalysts binding *OH species ca. 0.10 - 0.15 eV more weakly than 
Pt(111), [1, 2] later experimentally verified using a Pt3Ni(111)-skin surface [3]. Nevertheless, 
these predictions did not translate to Pt-based nanocatalysts, in part because these present 
multiple catalytic sites with a wide range of binding energies. Hence, an in situ picture of 
how strain is distributed on Pt-based surfaces is still lacking. 
 
In this contribution, we took benefit of recent advances in Bragg Coherent Diffraction 
Imaging (BCDI) [4, 5] and of the fourth generation Extremely Brilliant Source of the 
European Synchrotron (ESRF-EBS, Grenoble, France) to map strain over Pt nanoparticles 
in electrochemical environment. Our results reveal that strain is heterogeneously distributed 
between highly- and weakly-coordinated surface atoms, and propagates from the surface to 
the bulk of the Pt nanoparticle as (bi)sulphate anions adsorbed on the surface. 
 

 
 

Figure 1: Representation of the strain distribution observed on a Pt nanoparticle under potential control. 
T = 24°C, 0.05 M H2SO4 
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Global concerns about the rising level of greenhouse gas emissions and the related climate 

change demands the deployments of efficient processes that allow the selective removal of CO2 

from large point sources or directly from the atmosphere. To combat the ever-increasing 

emissions of CO2 into the atmosphere, the development of materials (CO2 sorbents and 

catalysts) to efficiently capture CO2 and convert it into value-added chemicals or fuels is key. 

[1-5] The rational advancement of CO2-sorbents and catalysts requires an in-depth knowledge 

of processes taking place at the atomic scale under reaction conditions. This talk will cover a 

series of studies employing in situ and/or operando synchrotron X-ray based methods to shed 

light onto the mechanisms at play at the atomic level of CO2-sorbents and catalysts for CO2 

valorisation. [1-2] Specifically, we will discuss some recent advances in the development of 

CO2 sorbents that are based on MgO. [1-2] Moreover, we will focus on structure-performance 

relationships in catalyst for CO2 valorisation via the dry reforming of methane or the CO2 

hydrogenation reaction. [3-4]   
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Ethylene is a widely-used petrochemically derived monomer, with a production of 150 

million tons in 2018, which is estimated to attain 185 million tons in 2023, due to the 

population growth and the rising living standards.  Nowadays, the non-catalytic steam 

cracking of naphtha is considered as the dominant process for ethylene production, mainly 

due to the “economy of scale” [1].  However, the abundance of the stranded gas reserves, 

combined with the so-called “shale gas revolution”, have revitalized the research interest for 

the employment of underutilized ethane towards the “on-purpose” ethylene production 

routes. The use of oxygen as an oxidant for the ethane dehydrogenation (EDH) process has 

been extensively investigated in literature, due to the exothermicity of the reaction [2]. 

However, the use of oxygen results in low ethylene yields due to the undesired total oxidation 

reactions towards COx. CO2 can act as a soft oxidant for EDH, shifting the thermodynamic 

equilibrium through H2 consumption via the reverse water gas shift (RWGS) reaction. 

Utilization of CO2 from large stationary points is in alignment with EU green deal and can 

significantly contribute to CO2 emissions curbing towards 2050. Iron- and/or nickel- oxide 

based catalysts, supported on different oxides, have been previously investigated for the 

tandem reactions of EDH and CO2 reduction elucidating the role of an interface between iron 

oxide and nickel oxide [3-6]. The latter interface was found to contribute to the enhanced 

performance. To unravel the nature of active sites that are responsible for the initial catalytic 

performance, advanced characterization techniques, such as XAS and XRS, along with 

structural modelling were applied. In our study we report important structural modification of 

the catalyst and the support. Its modification induced by incorporation of Fe into the support 

lattice, leading to a structural change of Mg geometry, as it was demonstrated by modelling of 

XRS data, at Mg L2,3. 

Under CO2 - EDH at 650°C, the nature of active sites was also dynamically changing leading 

to a C2H4 selectivity increase, at approximately constant C2H6 conversion: from ~ 74% at 1h 

TOS to ~ 90% at 6h TOS. [7] 

This results in unprecedented efficiency and selectivity and opens up novel substitution 

strategies, based on modulating chemistry and the anion-transition metal interactions, as 

avenues to design new improved catalysts. 
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In order to improve the PV efficiency of crystalline silicon (Si) solar cells, research focuses on 

several key targets, which include the understanding of structural defect generation during the 

solidification. Indeed, the industrial processes all face challenges to decrease the defect density, 

e.g. dislocations and sub-grains, and to understand their interaction with the impurities during 

solidification to ultimately improve solar cell electrical properties.  

 

Several samples all contaminated with carbon (C) are studied in this work: samples directly 

extracted from industrial ingots and model samples. The effect of C on the grain nucleation, 

grain boundary types, distortions and structural defects at several scales is analysed in details 

ex situ and in situ during the Si solidification. In situ X-ray imaging is performed in a unique 

device named GaTSBI (Growth at high Temperature observed by X-ray Synchrotron Beam 

Imaging) operated at ID19/ESRF. Two imaging techniques are combined during solidification: 

radiography and Bragg diffraction imaging (topography) [1]. They reveal the morphology and 

the kinetics of the solid/liquid interface, the defect formation and crystalline structure distortion 

dynamics. Rocking Curve Imaging (RCI) [2] is performed at BM05/ESRF ex situ after 

solidification to characterize quantitatively the crystalline structure distortions and 

misorientations.  

 

 

 

 

 

 

 

 

 

 
Figure 1: Sample contaminated with C (1017 at/cm3): a) In situ topographs at two instants during solidification. 

b) Transmission RCI maps. Left: Peak-Position, in degree. Right: Full Width Half Maximum, in degree. 

 

Crystal structure distortion is evidenced at several scales both in situ and after cooling down in 

the presence of C. Figure 1 shows topographs during solidification (Fig. 1.a) and RCI peak 

position and full width half maximum maps (Fig. 1.b) for a sample contaminated with C (1017 

at/cm3). We propose a mechanism related to the presence of C during Si solidification to explain 

the formation of these distortions and of sub-grains in the crystalline structure. 
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Mastering fast charging of high energy density Li-ion batteries is key to accelerate market 

penetration of electric vehicles (EV). This will be achieved by better understanding lithium 

concentration heterogeneities developing under high current densities, due to limited Li charge 

transfer rate or diffusion in the porous electrodes1. Disentangling these effects is possible through 

characterisation informed modelling currently under construction in BIGMAP, a European project 

part of Battery2003+ initiative. Characterisation wise, two different physical properties need to the 

measured on standardized samples: (1) electrode 3D morphology at nano/micro scale ideally during 

cycling, (2) spatially resolved lithiation heterogeneities at different charging rates The latest point 

being particularly tricky because requiring operando characterisation capable of quantifying lithium 

concentration at the micron scale in solid (electrodes) and liquid (electrolytes) phases within 

minutes2.  

In this talk, we will show Li heterogeneity quantification using correlated operando high-resolution 

neutron imaging (NI) and depth resolved micro-X-ray diffraction (µ-XRD) on a LiNiO2/graphite 

full cell using the same operando cell (see Figure). NI experiments were performed at the NeXT 

instrument at ILL, and synchrotron data were acquired on the ID31 beamline at ESRF in the frame 

of the Battery Pilot Hub project. Our correlative data acquisition and analysis method can be 

extended to other techniques in the frame of new experimental workflows developed in BIGMAP. 

 

 
 

Figure a Schematic of the correlated NI and µ-XRD experiment, b typical neutron radiography, c µ-XRD 

scanning and typical XRD patterns 
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Neutron imaging is sensitive to 6Li concentration in
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The chemistry and physics underlying the functionality of energy materials is complex, but 

needs to be understood towards knowledge-inspired improvements and novel concepts. Our 

approach to tackle this challenge is the combination of advanced electrochemical and operando 

X-ray methods with model systems. The objective is a foundational and scalable understanding 

of the functional role of each atom. Following a brief overview of our approach and recent 

progress, two examples will be discussed in detail. 

 

The first topic concerns charge and mass transport in electrolytes. We employed a novel 

approach to understand the ion transport mechanism and evaluate transport coefficients in a 

baseline polymeric electrolyte. Coherent X-rays were used to measure electrolyte velocity and 

concentration profiles upon cell polarization. The results were combined with macroscopic 

concentrated solution theory and microscopic molecular dynamics simulations to quantify and 

rationalize transference numbers, and to provide length-scale bridging insight into ion transport. 

 

The second topic covers the surface-electrochemistry in Li-ion batteries, with a specific focus 

on the origin of LiF in the solid electrolyte interphase. Towards this end, we sought out a 

multimodal experimental and theoretical approach using inert single crystalline model 

electrodes. We combined operando surface X-ray scattering with voltammetric scans of various 

electrolyte formulations, and quantum chemical calculations. Our results reveal that LiF 

nucleates via the electrocatalytic transformation of HF followed by significant PF6- anion 

reduction. 

 

The final part of the talk will be devoted to future opportunities to utilize coherent and high-

brilliance X-rays to study dynamic processes in energy storage materials, in particular using the 

advantages of the newly commissioned ESRF–EBS. 
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The understanding of the electrochemical reactions occurring in working conditions in 

rechargeable batteries is essential to design sustainable, safe and low-cost devices with high 

energy density. Despite the flourish of operando studies, mainly using X-ray synchrotron- and 

neutron-based techniques, the lack of standardization of the experimental conditions hinders 

the direct comparison of the results obtained from different experiments on the same material 

[1]. The definition and application of a standard experimental workflow is one of the pillars of 

the Battery Interface Genome - Materials Acceleration Platform (BIG-MAP) project [2], that 

propose to combine large-scale and high-throughput characterization with high performance 

computing and artificial intelligence approach. In this framework, we present an operando XAS 

study on the targeted LiNiO2 layered oxide as positive electrode for Li-ion batteries. An in situ 

electrochemical cell has been specifically developed for combining XAS and Raman 

spectroscopy, and the preliminary results obtained at the ROCK beamline will be presented. 
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Most energy storage devices are taking advantage of the electrochemical reactions time scale 

ranging from the microsecond to the minute to convert electrical energy into chemical energy 

[1]. Such a large time scale needs operando studies to shed light on the broad nature of 

mechanisms taking place in these systems. The highly bright synchrotron radiation allows 

fast acquisitions needed for time resolved studies, and so it is commonly used to probe 

different kinetics in the battery community. 

 

However, such an intense X-ray beam raise the question of unwanted interactions with the 

sample caused by photo-absorption or Compton scattering. The side reactions can degrade 

the battery components and alter the energy storage mechanism under scrutiny. This so-called 

beam damage has already been reported to be the cause of structure modification in protein 

crystallography experiments, requiring a close monitoring of the radiation dose [2]. Yet, a 

few studies report beam damage effects on the battery materials operation [3, 4, 5], and to 

our knowledge, none are quantitatively evaluating the X-ray dose absorbed with indications 

to consider when performing an operando study. 

 

Here we report a quantitative study on beam damage in Li-ion batteries. We investigate the 

different possible consequences of beam damage and its onset conditions. To do so, we 

closely monitor the X-ray dose absorbed by the materials and the electrolyte, and vary it to 

assess its effect by using a common synchrotron technique: operando X-ray diffraction. First, 

we evidence artificial phase transition triggered by a large X-ray exposure. Comparing it to a 

sample that has undergone limited irradiation, we reveal that the charge mechanism being 

probed is skewed by the biased transition. Then, we manage to follow finer structure and 

microstructure modifications of material evolution provided by an over-exposure to the beam. 

Based on the precise dose monitoring, we defined several X-ray dose threshold related to a 

type of material degradation. Finally, we consider the dose rate, which also affects the extent 

of damages the material is subjected to. Thereby, we unveil that beam damage is driven by 

the mingled action of dose and dose rate. 
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The energy dispersive EXAFS (EDE) setup has been proved to be an applicable technique to 

study rechargeable batteries as shown in the schematic figure. Different ions (lithium, sodium, 

magnesium and zink) batteries have been measured with EDE, either in time-resolved 

operando or static XAS mode at ODE beamline Soleil synchrotron [1-5]. The disadvantage 

and advantage of EDE on battery studies will be discussed.   

 

 
 

Schematic experimental setup for in-situ EDE on rechargeable batteries 
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The development of more efficient future energy storage systems requires a deeper 

understanding of the impact of the internal microstructure on the material properties and the 

electrochemical performance of the battery cell. This implies the use of non-destructive 

advanced characterization techniques which can provide high resolution (particle sub-

micrometer scale) and sufficient contrast. In this talk, a workflow to 3D nano-image the 

electrochemical cells in situ will be presented. A nano-tomography in situ setup has been 

specifically designed to take advantage of the high flux and high coherent X-ray nano-beam 

provided at the ID16B beamline of ESRF-EBS, combined with the fast acquisition available 

with the new generation of cMOS detectors. 

 

In particular, the talk will discuss the 3D morphological characterization of the internal structure 

of electrodes: solid-pore phase identification, interface characteristics, tortuosity, particle/pore 

size distribution, particle/pore orientation, etc. In addition to the characterization of the initial 

morphology, the 4D (3D + time) quantification of the progressive evolution of the morphology 

with cycling will be explored through the measurement of kinematic fields (displacements and 

strains) in the bulk electrode. These time-resolved measurements offer the possibility to study 

the performance degradation mechanisms of the cell during operation. The obtained results 

prove the applicability of the designed workflow at ID16B for in situ studies of electrochemical 

cells and suggest that future similar applications can be very valuable for the improvement of 

the performance of existing systems and can potentially lead to a better design of new battery 

materials. 
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Sulphur based solid electrolytes (SE) are a promising candidate for realising solid state battery 

systems as they exhibit both reasonable ionic conductivity1 and ease of processability. These 

solid electrolytes are unfortunately not fully stable upon cycling, due to their narrow 

electrochemical stability, causing electrochemical degradation during cycling which reduces 

their long-term electrochemical performance. Despite current investigation, the link between 

structural and morphological changes and electrochemical performance is yet poorly 

understood especially during lithiation and delithiation2.  

 

X-ray diffraction computed tomography (XRD-CT) carried out at ID15a at the European 

Synchrotron Radiation Facility allows distribution of specific chemical species within a 

material to be resolved spatially. The focus of this work, in which ex-situ half cells of L6PS5Cl 

have been examined using XRD-CT after 50 charge-discharge cycles against lithium-indium, 

in both reduction and oxidation and compared to a pristine sample, is to observe the localisation 

of chemical changes as a function of the depth of the reaction in the cells and gain insight into 

how they affect the morphology.   

 
Figure 1: phase distribution maps of (left to right) LPSCl, LiCl and InLi close to the LiIn electrode of a half cell 

cycled 50 times between 2V and 0.05 V.  
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