INSTITUT LAUE LANGEVIN

Neutron Instrumentation

Eddy Lelièvre-Berna Services for Advanced Neutron Environment (SANE) — lelievre@ill.eu

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Neutron instrumentation

- What do we measure and need ?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

THE EUROPEAN NEUTRON SOURCE

Neutron instrumentation

- What do we measure and need ?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

THE EUROPEAN NEUTRON SOURCE

What do we measure ? Elastic scattering: $\|\vec{k}_i\| = \|\vec{k}_f\|$

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Sample

Intensity vs wave-vector transfer

 $\overrightarrow{Q} = \overrightarrow{k}_f - \overrightarrow{k}_i$

What do we measure ? Inelastic scattering: $\|\vec{k}_i\| \neq \|\vec{k}_f\|$

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

k Detector

Sample

Intensity vs wave-vector & energy transfer

 $\overrightarrow{Q} = \overrightarrow{k}_f - \overrightarrow{k}_i, \ \hbar\omega = E_f - E_i$

What do we measure ?

Polarised neutron scattering

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

In general, the polarisation of a neutron beam will change both in magnitude and direction upon scattering from a magnetic material.

What do we measure ? Polarised neutron scattering

- We measure intensities:

$$\mathbf{P}_{i,j} = \frac{P_i \mathbb{P}_{i,j} + P_j}{\|\vec{P}_f\|}$$

$I(\vec{Q}, \vec{P}_i, \hbar\omega)$ where $\vec{Q} = \vec{k}_f - \vec{k}_i, \ \hbar\omega = E_f - E_i$ • and components of the scattered polarisation \overrightarrow{P}_{f} for each direction of the incident polarisation \overrightarrow{P}_{i} :

 $\frac{j}{-}$ with $(i, j) \in \{x, y, z\}$

So what do we need ?

- Control the incident (scattered) energies or λ → Monochromators, choppers, analysers, Larmor labelling...
- Control the incident and scattered beam directions → Collimations, encoded shafts, Tanzboden, slits...
- Control the incident (scattered) beam polarisations → Monochromators, analysers, supermirrors, spin filters & flippers...
- Count neutrons with monitors and detectors

Neutron instrumentation

- What do we measure and need ?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

THE EUROPEAN NEUTRON SOURCE

Guides Constructibility

- A real instrument has to fit in a real space, and it will never be large enough!
- thermal, cold, hot neutrons?
- wide-band, monochromatic?
- divergence, etc.?

Neutron guides

- A guide is made up of sections joined together
- Glass is cheap and sufficiently thick to hold the vacuum
- Curved guides can eliminate fast neutrons ($R \approx \text{km}$)
- Guides can split, focus, collimate, polarise...

11

Neutron guides

E.g. supermirrors from Swiss Neutronics

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Neutron guides

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Neutron guides H5 installation in 2014 at ILL

S-DH GmbH

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Neutron guides of the UCN source in 2021 at ILL

S-DH GmbH

Shield against neutrons & gammas

- Hydrogeneous
- concrete, wax, polyethylene
- Boron, ⁶Li, Cd, Gd/GdO
- Lead, Iron (soft steel)

• Number of collected neutrons x25 since 2000 at ILL. The shielding efficiency must continuously be improved to save space!

Neutron guides & shielding

European Spallation Source (Sweden) 5 MW long pulse source — 2 billion €

150 m long guides

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

THE EUROPEAN NEUTRON SOURCE

Neutron instrumentation

- What do we measure and need ?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

Measuring techniques Neutronography

5 µm resolution — complementary to x-rays

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

THE EUROPEAN NEUTRON SOURCE

Measuring techniques Elastic scattering

- Powder diffraction
- collimator, filter
- focusing monochromator
- (spin polariser)
- slits, monitor
- collimators
- detectors

Measuring techniques Monochromators

- Array of single crystals
- To select energy (and polarisation)
- Cu, Si, HOPG, Heusler, Diamond...
- Flat, focusing vertically and/or horizontally
- Optimised mosaic

Heusler (Cu₂MnAI) polarising crystal

Ø80x300 mm³ Cu crystal

Bridgman furnace

EUROPEAN NEUTRON SOURCE ТНЕ

Measuring techniques Monochromators

- Array of single crystals
- To select energy (and polarisation)
- Cu, Si, HOPG, Heusler, Diamond...
- Flat, focusing vertically and/or horizontally
- Optimised mosaic

D20 vertically focusing Cu monochromator

IN8 doubly-focusing monochromator

EUROPEAN NEUTRON SOURCE ТНЕ

Measuring techniques Elastic scattering

- Crystal diffraction
- (polarising) monochromator
- harmonic filters
- monitor, (spin flipper)
- collimation, slits, (cradle)
- (polarimeter & spin analyser)
- single or PSD detector

• Mezei's flipper: sensitive to environmental magnetic fields, neutron wavelength dependent, for cold and thermal neutrons only

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

b X $\boldsymbol{B}_R = \boldsymbol{B}_G + \boldsymbol{B}_C$ $\langle P_{\mathsf{out}} \rangle$ $\langle P_{\mathsf{out}} \rangle$ $\langle P_{\mathsf{in}}
angle$ Y

efficiency down to 0.3 Å, operates in up to 400 G stray fields

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

• Cryoflipper (Tasset's flipper): neutron wavelength independent, 99.9%

THE EUROPEAN NEUTRON SOURCE

the effective field and rotates adiabatically.

• RF flipper: in the rotating frame of the neutron, the polarisation follows

the effective field and rotates adiabatically.

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

• RF flipper: in the rotating frame of the neutron, the polarisation follows

λ independent and no material in the beam

Measuring techniques Spin polariser & flipper

• ³He spin filters are characterised by their opacity: $\mathcal{O} = N \ell \sigma_{\#}$

 $\simeq 0.0732 p[bar] \ell[cm] \lambda[Å]$

The total transmission and polarising efficiency are:

 $T_n \propto \cosh\left(\mathcal{O}P_{^3\mathrm{He}}\right)$

 $P_{\epsilon} = \tanh(\mathcal{O}P_{^{3}\text{He}})$

Measuring techniques Spin polariser & flipper

• ³He spin filters are characterised by their opacity: $\mathcal{O} = N \ell \sigma_{\#}$

 $\simeq 0.0732 p[bar] \ell[cm] \lambda[Å]$

The total transmission and polarising efficiency are:

 $T_n \propto \cosh\left(\mathcal{O}P_{^3\mathrm{He}}\right)$

 $P_{\epsilon} = \tanh(\mathcal{O}P_{^{3}\text{He}})$

Banna-shaped Quartz cell

Quartz cell

Si-windowed cell

Measuring techniques Manipulation of the beam polarisation (polarimeter)

• Cryopad:

<u>Cryogenic</u> **Polarisation** Analysis Device

- sample in zero field
- manipulates the beam polarisation vector before and after the sample

Measuring techniques Manipulation of the beam polarisation

- Cryopad:
 - <u>Cryogenic</u> <u>Polarisation</u> <u>Analysis</u> <u>Device</u>
- sample in zero field
- manipulates the beam polarisation vector before and after the sample

Measuring techniques Elastic scattering

- Small angle neutron scattering (SANS)
- collimators, slits, detector(s) in evacuated chamber

- velocity selector, (polariser + flipper), filter, (choppers in TOF mode),

THE EUROPEAN NEUTRON SOURCE

Measuring techniques Velocity selectors

- Large $\Delta\lambda/\lambda$: typically 10 to 12% fwhm resolution
- High transmission: from 75 to 95%
- Rotation frequency: from 1.000 to +5.000 Hz
- Multi-disc or multi-blade

Measuring techniques Specular & off-specular scattering

Horizontal or vertical reflectometry

monochromator or choppers (TOF mode), (polariser + flipper), monitor, collimator, slits, detector in evacuated chamber

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Measuring techniques Inelastic scattering

- Three-axis spectroscopy
 - collimator, (filter, velocity selector)
 - (polarising) monochromator
- slits before (and after) sample
- (spin) analyser
- single or PSD detector
- very low neutron background

35

Measuring techniques Inelastic scattering

- Three-axis spectroscopy
- collimator, (filter, velocity selector)
- (polarising) monochromator
- slits before (and after) sample
- (spin) analyser
- single or PSD detector
- very low neutron background

Measuring techniques Inelastic scattering

- Three-axis spectroscopy
- collimator, (filter, velocity selector)
- (polarising) monochromator
- slits before (and after) sample
- (spin) analyser
- single or PSD detector
- very low neutron background

Measuring techniques Inelastic scattering

- Time of flight spectroscopy
 - choppers, monitor, collimator
 - (monochromator, filter, choppers)

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Measuring techniques Choppers - Time of flight technique

- TO choppers to stop fast neutrons (pulsed sources)
- Bandwidth-limiting choppers (prevent frame overlap)
- E_0 or Fermi choppers to transmit a very narrow bandwidth of neutrons (e.g. to define E_i)

T₀ single-blade rotor

assembled T₀ chopper unit EUROPEAN NEUTRON SOURCE ТНЕ

Measuring techniques Choppers - Time of flight technique

- TO choppers to stop fast neutrons (pulsed sources)
- Bandwidth-limiting choppers (prevent frame overlap)
- E_0 or Fermi choppers to transmit a very narrow bandwidth of neutrons (e.g. to define E_i)

EUROPEAN NEUTRON SOURCE ТНЕ

IN5 chopper disc

Measuring techniques Quasi-elastic scattering

- Backscattering
- velocity selector
- background and phase space transformation choppers
- Doppler monochromator
- analysers
- position sensitive detector (PSD)

IN16B HF

Measuring techniques Quasi-elastic scattering

- Neutron spin echo
- velocity selector
- polarising supermirrors
- precession solenoids
- π and $\pi/2$ flippers
- spin analyser, PSD detector
- choppers for TOF mode

Measuring techniques Quasi-elastic scattering

- Neutron spin echo
- velocity selector
- polarising supermirrors
- precession solenoids
- π and $\pi/2$ flippers
- spin analyser, PSD detector
- choppers for TOF mode

Measuring techniques Nuclear & particle physics

- dedicated instruments or beam facilities shared by a community
- MeV, cold (meV) and ultra-cold (neV) neutron sources
- often long experiments for testing fundamentals models or measuring constants
- experiments studying nuclei

turbine wheel

3,2 m

Neutron instrumentation

- What do we measure and need ?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

Ambient environments

- SANS sample changers
- up to 3x8 samples
- -20 to +150°C
- independently settable temperature or not
- compatible with in-situ dynamic light scattering
- low-background design
- sample mixing option

Ambient environments

- Stopped-flow observation heads for SANS
- reduced sample volume
- controlled temperature
- B₄C neutron slits
- reversible with SF system
- compatible with two types of Hellma cells (1, 2 mm neutron path)
- side windows provided for in-situ dynamic light scattering

Ambient environments

- Humidity chambers
- up to 100%RH
- 10%RH steps in 10-25'
- 0.1%RH stability
- sample mounted, aligned and stabilised off-line
- electronics providing T and %RH direct control
- H₂O or D₂O.

Sample _

Goniometer.

Cu base.

Post in PEEK.

J. Neutron Research 21 (2019) 65

Ambient environments

- Humidity chambers
- up to 100%RH
- 10%RH steps in 10-25'
- 0.1%RH stability
- sample mounted, aligned and stabilised off-line
- electronics providing T and %RH direct control
- H_2O or D_2O .

J. Neutron Research 21 (2019) 65

THE EUROPEAN NEUTRON SOURCE

51

Ambient environments

- Adsorption troughs for reflectometry
- up to 12 troughs
- 2 different volumes
- in-situ surface tension monitoring
- temperature ctrl
- gas sorption ctrl
- no condensation
- B₄C absorbers

Low temperatures

- He-flow cryostats
- 1.5 / 2.8 to 320 K
- Ø330-450 mm
- He-flow cryofurnaces
- 1.5 to 550 / 650 K
- Ø330-450 mm
- Dry cryostats (cryogen-free)
- 1.8 to 320 K with JT
 - 2.7 to 620 K without JT

Sample environments Low-background cryostat tail

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Science & Technology Facilities Council ISIS Neutron and Muon Source

Sample environments De-twin crystals remotely at low-T

- T-independent uniaxial pressure applied remotely
- 1.5 K base temperature
- 120 N max. force

Sample environments Align crystals remotely at low-T

- Goniostick (licensed to IRELEC)
- non-magnetic
- $\pm 7^{\circ}$ sample tilting
- ±0.02° reproducibility
- ±10 mm vertical tuning
- ±180° vertical rotation
- fits inside >Ø36 mm bore cryostats/magnets
- available inside cryostats and magnets

J. Neutron Research 19 (2017) 27

Align crystals remotely at low-T

- Cryocradle
- non-magnetic, fits inside zero-field polarimeter Cryopad
- flexible arms to cancel backlash and manage thermal expansion

$$3 < T < 300K$$

 $-30 < \chi < +210^{\circ}$
 $-180 < \phi < +180^{\circ}$
 $-40 < 2\theta < +120^{\circ}$

Ultra-low temperature systems

- ³He fridges/inserts
- down to 350 mK
- Dilution fridges/inserts
- down to 15 or 40 mK
- Compact dilution fridge
- down to 100 mK
- Large dilution cryostats
- for high-pressure cells, complex environments

Ultra-low temperature systems

- ³He fridges/inserts
- down to 350 mK
- Dilution fridges/inserts
- down to 15 or 40 mK
- Compact dilution fridge
- down to 100 mK
- Large dilution cryostats
- for high-pressure cells, complex environments

Ultra-low temperature systems

- ³He fridges/inserts
- down to 350 mK
- Dilution fridges/inserts
- down to 15 or 40 mK
- Compact dilution fridge
- down to 100 mK
- Large dilution cryostats
- for high-pressure cells, complex environments

Sample environments Gravity insensitive dilution refrigerator on D10 (ILL)

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Standard resistive furnaces

- 320 to 2000 K
- V or Nb in beams
- automated control
- 2 and 3.5 kVA
- Ethernet
- 3 versions:
- standard
- cradle (single crystal diffraction)
- sapphire windows (SANS)

Sample environments Static high-field cryomagnets

- Vertical field (Ø800 mm)
- up to 15T, top-loading
- 40 mK dilution insert,
- symmetric or asymmetric
- self-shielded or not
- 2T Dy booster + focusing
- Horizontal field ($\approx 400 \text{ mm}$)
- up to 17T, bottom-loading

Sample environments 40T pulsed-field cryomagnet

 Available at ILL through collaboration with CNRS/LNCMI Toulouse Ø8 mm sample 2K base temperature ±15° incident horizontal access ±30° outgoing horizontal access ±7° outgoing vertical access ... and 1.000L liquid N_2 / day at 40T

Sample environments 40T pulsed-field cryomagnet

 Available at ILL through collaboration with CNRS/LNCMI Toulouse Ø8 mm sample 2K base temperature ±15° incident horizontal access ±30° outgoing horizontal access ±7° outgoing vertical access ... and 1.000L liquid N_2 / day at 40T

Sample environments High-pressure cells for membrane layers and systems in solutions

- AI, TiZr and CuBe versions
- 250, 600 and 700 MPa cells
- compatible with "non-freezing" stick
- hosts samples on substrates

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

J. Neutron Research 19 (2017) 77-84

Project funded by the European Union (GA n°283883)

Sample environments High-pressure at low-T for diffraction

- 23 GPa max
- Automated pressure & temperature control

High Pressure Research 36:1 (2016) 73

Neutron instrumentation

- What do we measure and need ?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

Neutron detectors Remarks...

- We cannot directly detect slow neutrons: they carry too little energy and have no charge.
- We need to use nuclear reactions to convert neutrons into energetic charged particles.
- Then, we can use some of the many types of charged particle detectors

Neutron detectors

Common charged particle detector types

- <u>Ionisation mode</u>: Electrons drift to anode, producing a in low-efficiency beam-monitor detectors.
- Proportional mode: If voltage high enough, electron Gas amplification increases the collected charge.
- <u>Other techniques</u>: CCD cameras, image plates (Laue), scintillation detectors, boron detectors.

charge pulse with no gas multiplication. Typically employed

collisions ionise gas atoms producing even more electrons.

Neutron detectors

- Spatial resolution is "generally" not an issue, in the range of 1-10 mm i.e. \approx sample size
- Fast neutrons, electronics and gammas lead to background noise. Counting mode is more appropriate than integrating mode.
- High detection efficiency required for scattered neutrons, low efficiency enough for incident beam.

Neutron detectors

30 m² low-res, low count rate for time of flight

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

19x19 cm² high res, high count rate for diffraction

Monobloc multitube for Reflectometry, SANS

Neutron detectors

Old XY counter — 200 kHz max

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

New 128 PSD counter — 10 MHz max

Neutron instrumentation

- What do we measure and need ?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

Data acquisition hardware

- VME crates (low power)
- NIM crates (high power)
- Power supplies for DC and stepper motors, flippers, guiding fields, etc.
- Sample env. controllers

Data acquisition software

- Speaks in physical units
- Acts as a "super-calculator" for the local contact to access complex instrument's configurations
- or advanced regulations
- Provides command-line tools, <u>remote access</u>, etc.

Provides performance optimiser for fine adjustments

Checks jobs, estimates run-time, executes jobs safely

Data acquisition software

X-Ray & Neutron Science — 7 Sept. 2021 — E. Lelièvre-Berna

Special thanks to... I. Anderson — ORNL (USA) P. Courtois — Neutron Optics, ILL B. Guérard — Neutron Detectors, ILL M. Kreuz — Neutron Guides, ILL P. Mutti — Instrument control, ILL ... and you!

