Spin-phonon coupling in uniaxial anisotropic spin-glass based on Fe₂TiO₅ pseudobrookite

<u>J.E. Rodrigues</u>¹, W.S. Rosa², M.M. Ferrer³, J.L. Martínez¹, P.S. Pizani⁴, J.A. Alonso¹, R.V. Gonçalves²

¹Instituto de Ciencia de Materiales de Madrid, Cantoblanco, E-28049 Madrid, Spain ; ²São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos SP, Brazil; ³São Paulo State University, UNESP, 17033-360, Bauru SP, Brazil; ⁴Department of Physics, Federal University of São Carlos, PO Box 676, 13565-905, São Carlos SP, Brazil; **rodrigues.joaoelias@gmail.com**

The ferric pseudobrookite is a rare example of uniaxial anisotropic spin-glass insulator, depicting a multiglass behaviour and magnetoelectric coupling. Here, we present Raman spectroscopy results in order to elucidate the spin-phonon coupling in Fe₂TiO₅ for the first time. The experimental data are supported by computational simulations performed in view of density functional theory, which allowed us to assign the main Raman-active modes. Temperature-dependent phonon behaviour exhibited anomalous evolution around 55 and 80–200 K, which was explained as successive coupling between lattice and spin configuration arising from spin freezing and short-range magnetic correlation, respectively. Arguments that the magnetoelectric effect in Fe₂TiO₅ is mediated by spin-phonon coupling are presented.