Trace elements in silicate melts at high pressure

C. Sanloup, C. Crépisson, C. Leroy, C. de Grouchy, B. Cochain, L. Cormier

IMPMC, Sorbonne Université
University of Edinburgh, School of Physics
PLANETARY DIFFERENTIATION DURING PLANETARY MELTING

Does pressure affect the geochemical affinity of elements with silicate melts?

→ **compatible/incompatible:** crust formation $^{176}\text{Lu}/^{176}\text{Hf}$, $^{146}\text{Sm}/^{142}\text{Nd}$, $^{182}\text{Hf}/^{182}\text{W}$

→ **lithophile/volatile:** atmosphere formation $^{129}\text{I}/^{129}\text{Xe}$

Table of Elements

- **Os** siderophile
- **Cu** chalcophile
- **Rb** lithophile
- **N** atmophile

Diagram

Planetary differentiation

Periodic Table

- Elements are classified into categories: incompatible, compatible, lithophile, and volatile.

Notes

- $^{176}\text{Lu}/^{176}\text{Hf}$, $^{146}\text{Sm}/^{142}\text{Nd}$, $^{182}\text{Hf}/^{182}\text{W}$ indicate isotopic ratios used to study crust formation.

- $^{129}\text{I}/^{129}\text{Xe}$ indicates isotopic ratios used to study atmosphere formation.
Exploring silicate melt structure at high P-T conditions

Informations:
1) First coordination shell: interatomic distance, nature of neighbouring atoms, coordination number, oxidation state
2) mid-range order (XRD), second coordination shell (XRD, XAS)

X-ray diffraction:
All elements contribute to signal

X-ray absorption spectroscopy:
Chemically selective, model dependent

Drewitt et al., PRB 2013.
Wilke et al., Chem. Geol. 2006.
Trace and minor elements in magmas: experimental approaches

X-ray diffraction:
All elements contribute to signal
Restrictions: only very heavy elements
Fe-free compositions

Elements: Lu, Nd, Xe

X-ray absorption spectroscopy:
Chemically selective, model dependent
Restrictions: 11 keV < energy < 30 keV

Elements: W, Nb, Br, Kr

Major oxide components in silicate melts:

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>granite</td>
<td>76%</td>
<td>13%</td>
<td>2%</td>
<td>0.5%</td>
<td>2.5%</td>
<td>3%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>haplogranite</td>
<td>68%</td>
<td>11%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4%</td>
<td>3%</td>
<td>15%</td>
</tr>
<tr>
<td>basalt</td>
<td>50%</td>
<td>15%</td>
<td>8%</td>
<td>8%</td>
<td>13%</td>
<td>2%</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

Drewitt et al., PRB 2013.
Probing trace elements in melts at high P-T conditions using XRD

Window between 1.8-2.5 Å: where many key trace elements are expected

Requirement of a sufficiently large q-range:
high-energy angle dispersive XRD in DACs or energy dispersive XRD in large volume presses

Molten haplogranite in RH-DAC
Or ambient P-T glass

Ideal but impossible now at high P
Best at high P
Possible at high P
Insufficient resolution

Sanloup and de Grouchy, in Magmas under pressure 2018.
Probing trace elements in melts at high P-T conditions using XRD

Angle-dispersive x-ray diffraction and DACs:
correction for diamonds Bragg peaks is significant at high energies

33 keV, MAR555
60 keV, Perkin-Elmer
Probing trace elements in melts at high P-T conditions using XRD

Energy-dispersive x-ray diffraction and large-volume press

Anorthite-diopside melt + Lutetium

APS, HPCAT, 16BM-B

NB: some elements may have strong fluorescence peaks that need to be removed
Exploring silicate melt structure at high P-T conditions

Resistive heating DACs:

Optimizing sample volume
Large opening DACs, e.g. Boelher-Almax anvils
Need hydrated glasses to lower melting T

Paris-Edinburgh press:

Same cell-assembly used for XRD and XAS (provided by the APS)

High stability at high T, large vertical access

![Diagram showing the structure of the Paris-Edinburgh press with labeled parts and dimensions.](image)
X-ray absorption spectroscopy at high P-T conditions

Requires nanocrystalline diamond capsules or anvils
PRIUS programme, GRC Ehime University (Pr. Irifune)

Br-dopped (0.4 at%) dacitic melt

Using polycrystalline diamond capsules (Almax)

Using nanocrystalline diamond capsules (Ehime)

Cochain et al. Chem Geol 2015
X-ray absorption spectroscopy using a Paris-Edinburgh press

Long collection times (3 hours) ⇒ Need high stability cell-assembly and large vertical gap to optimise signal/noise ratio

Nanocrystalline diamond capsules ⇒ Need to raise T above 1000 °C for P increase

Use of Pt-Rh or graphite caps:
Possibility to buffer the redox state (also talc powder outside caps)

Lu-O coordination change in basalts: from 6 to 8 at 4-5 GPa

An-D: Fe-free basalt analogue
HPG: Fe-free granite analogue

Fit of the Lu-O contribution:

⇒ Lu-O coordination change in basalts: from 6 to 8 at 4-5 GPa

de Grouchy et al, EPSL 2017

G(r)

G(r)

Distance, r (Å)

Distance, r (Å)
Changes of environment of Lu, Nd in melts at high P: summary

- Lu-O: CN changes from 6 to 8 at \(\sim 4-5\) GPa
- Coincides with change of P-dependence in crystal/melt partitioning
- Nd-O: CN changes from 6 to 8 at \(\sim 1-2\) GPa

\(\Rightarrow\) \(D_{\text{Lu}}/D_{\text{Hf}}\sim 1\) above 5 GPa: Lu and Hf should not be fractionated in high P basalts

\(\Rightarrow\) Decoupling of Lu/Hf and Nd/Sm systems for high P melts
Reactivity of xenon and krypton in magmas

X-ray diffraction @ 60 keV, PetralII (Hambourg)

Haplogranite melt

\[\text{Xe-O} = 2.1 \pm 0.1 \text{ Å} \]

⇒ similar distance in crystals, but different CN

Leroy et al. EPSL 2018
Reactivity of xenon and krypton in magmas

EXAFS, ESRF (BM23)
Glass and molten feldspar (sanidine) doped with Xe:Kr gas

Xe edge

Kr edge

Crépisson et al. Chem Geol 2018
Reactivity of xenon and krypton in magmas

EXAFS, ESRF (BM23)
Glass and molten feldspar (sanidine) doped with Xe:Kr gas

Kr-O = 2.5±0.1 Å

⇒ Kr also gets oxidized under pressure

Crépisson et al. Chem Geol 2018
Basalt +0.6 wt% W

- Current debate on change from W^{6+} to W^{4+} with pressure

\Rightarrow Reduction of W in the melt around 2-3 GPa
\Rightarrow Not preserved in the quenched glass

Cochain et al. *In prep.*
Tungsten – Effect of oxidation state on partitioning

High pressure residues have high [W]

Fonseca et al. EPSL 2014
Righter&Shearer, GCA 2003

This work, nanoSIMS
Trace elements in melts: perspectives opened by the EBS

X-ray diffraction:
Currently limited to upper mantle studies for trace elements

EBS:
Much shorter collection times at high energy (>60 keV)
Better focusing at high energy
⇒ compatible with laser heating DAC

X-ray absorption spectroscopy:
Chemically selective, model dependent
Restrictions: 11 keV < energy < 30 keV

EBS:
Higher energies accessible at high P-T
Real ‘trace’ elements studies instead of 1% concentrations, i.e. <0.1 at%

⇒ Eventually also using LH-DACs
⇒ Opens applications to the whole terrestrial P-T range
(i.e. deep mantle reservoirs, core formation) with natural concentrations
Thanks for provision of beamtime:
APS HPCAT 16BM-B, ESRF BM23, Diamond I15

Contributed to this work:

for synchrotron experiments:
D. Daisenberg1, I. Kantor2, Y. Kono3, Z. Konopkova4, K. Glazyrin4, A. Rosa2

for nano-SIMS analysis:
M. Roskosz5

1Diamond Light Source, 2ESRF,
3HPCAT, Carnegie Institution of Washington now at Ehime University,
4DESY, 5Museum National d’Histoire Naturelle

Work funded by the European Research Council
“Magmas at depth: an Experimental Study at Extreme Conditions”