Modern DAQ Architectures for HEP Experiments

Intelligent Detectors and Smart Data Reduction in the Era of Big Data

Emilio Meschi CERN/EP

IFDEPS Workshop Annecy 11-14 March 2018

Detector

DAQ

- Trends in HEP
- Readout and Data Acquisition
- Data Reduction: Intelligent Detectors
- Putting it all together

Trends

 Rare phenomena require larger and larger integrated luminosity

$$\frac{dR}{dt} = \mathcal{L} \cdot \sigma_p \qquad \mathcal{L} = \frac{N_1 N_2 f N_b}{4\pi \sigma_x \sigma_y}$$

- Shorter and shorter time between collisions
- Large numbers of interactions per crossing

$$\langle PU \rangle = dR/dt / N_b f$$

• Interesting physics in regions with high occupancy

Colliders bunch crossing frequencies

-25 ns defines an overall time constant for signal integration, DAQ and trigger.

- Nota Bene: The LHC rate of collisions (**40 MHz**) was not affordable by any data taking system at the time of the first design of the LHC experiments.
- The off-line computing budget and storage capacity limit the output rate

HL-LHC

Detectors

CERN

Trends

- Must cope with inherent physical limitations of calorimetry
 - Exponential increase of granularity
 - Increasingly important role of tracker-driven corrections and identification (particle flow)
 - Solid state calorimeters the next jump
- Muon identification vs. momentum accuracy
 - Modern gaseous detectors
 - To cope with larger and larger occupancy

High-Granularity Calorimeter (CMS)

Key Parameters:

- EC covers $1.5 < |\eta| < 3.0$
- Full system maintained at -30 C
- ~600 m² of silicon sensors
- ~500 m² of scintillators
- 6M Si channels, 0.5 or 1 cm² cell size
- ~27000 Si modules
- Power at end of HL-LHC: ~100 kW per endcap

Active Elements:

 Hexagonal modules based on Si sensors in CE-E and high radiation regions of CE-H

Electromagnetic calorimeter (CE-E: Si, Cu & CuW & Pb absorbers, 28 layers, 25 X0 & ~1.3 I Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5 I

Pileup → Number of charged tracks

Crossing rate / Interbunch

50Tb/s @HL-LHC after L1 trigger

Another 50 Tb/s to L1 trigger (e.g. CMS) – raw hit rate is another order of magnitude

Rate / data volume

Trends: HEP vs. Datacom

- HEP experiments become exponentially more complex
 - Predominant role of precision tracking
 - Driven by the need to provide accurate charged track momenta and vertex position (and displaced decay vertices)
 - Made possible by solid state detectors and very large scale integration
 - Huge number of channels (solid state detectors >10⁷)/ Huge masses of data
- Exponential increase of bandwidth requirements
 - Serial Optical Links to the rescue
- Datacom explosion (driven by commercial traffic)
 - Higher per-link data-rates (25, 50, 100 Gb/s)
 - Multi lane links (x4, x8, x12, x16)
 - Tighter integration with electronics
 - Lower power

New Physics is hard to chase

Readout and Data Acquisition

Readout

- At the LHC, today's general purpose experiments each have 50-100k links
- LHC Phase I upgrades based on Datacom technology
- Optical Data Transmission technology is key in readout of modern HEP detectors
 - High Bandwidth (multi-Gb/s per link) low mass, low power
 - Immune to electromagnetic interference (+ isolation between power and readout)
 - Sufficiently radiation tolerant
- Typical rad-hard optical links of today @5Gb/s

GBT / VL

- Upstream 5 / 3.2 Gbps (low power) or 10 / 6.4 Gbps signalling / effective
- **Downstream 5 Gbps**

Readout

Optical layer is only part of the story

- Acquisition, aggregation, and serialisation before transmission over the link
- Interconnectivity between front- and back-ends
- ASICs need to be specified and designed to meet system requirements
 - Increasingly complex over generations

DAQ in 2000

- Pipelines, Custom multi-level trigger processors
- Simple first level with limited latency (because of pipeline depth) and input throughput
- Readout Buffers limitations require a second level before event building

DAQ in 2009

- Only one Level of Custom electronics trigger
- Algorithms limited by input throughput and number of gates in FPGA
- Memory bandwidth allows concurrent readout and event building on commercial computers

What next ?

Can we get rid of custom trigger electronics ?

- Not quite... but
- We have high-speed (multi-25 Gb/s) serial links into powerful FPGAs

LHCb Run 3 DAQ (2021)

What Next ?

- Brute-force readout at crossing rate still difficult but...
 - Make the most of multi-Gb/s optical links
- Use "intelligent" front-end (at least to reduce L1 input)
- Large FPGA & high-level synthesis tools
 - FPGA-based "standardized" processor boards can run sophisticated trigger algorithms using tracking

Data Reduction: Intelligent detectors

Put some intelligence in the detector...

CMS: CERN-LHCC-2017-009

 $Pt > 2 GeV \rightarrow Data reduction by one order of magnitude$

CMS HGCal L1-Trigger

- Trigger Cell (TC) = 4 or 9 hexagonal cells
- Online data reduction at front-end
 - select average 10% TCs per module
 - The selected TCs are used as input to back-end algorithms to produce the trigger primitives (clusters)

- More intelligent detectors
 - Capable of "reconstructing themselves"
 - Require high speed connectivity from layer to layer
- Complex algorithms at front-end
 - Difficult in high-radiation environment
 - Exploit alternative technologies

More intelligent detectors

- Wireless data transmission
- 60 GHz large bandwidth potential
- Small form factor antenna
- Driven by industry

NIM A 830, 417-426 (2016)

e.g. WADAPT (S.Dittmaier et al.) Ideal for layer distances of 1-10 cm Must deal with reflections, cross talk, signal induced on silicon

More intelligent detectors

- Electro-optical modulation
- MEMS mirrors and lenses can apply transforms
- Phys. Proc. 37, 1805 (2012)
- Must deal with
 - Signals induced in silicon by laser beam
 - Source and alignment
 - Reflections

JINST 10 C08003 (2015)

http://www.sciencedirect.com/science/article/pii/S1875389212018998

Optical Processing: modulators & lenses Transforms: e.g. filter high-Pt components (in x-y)

Image processing techniques at front-end Compressive sampling

Error-correction in rad-hard environment

Data Reduction: Preemptive Reconstruction

idea

- Best when
 - input data scattered over many sources
 - But computing resources concentrated and in "small" number
 - algorithms are non-local
 - computing resources are "homogeneous"
- N.B. DAQ Event Building is (equivalent to) Time Multiplexing

G. Hall et al 2014 JINST 9 C10034

At L1 (HL-LHC)

Example: CMS HGCAL Level-1 clustering

- **Stage-1:** Dynamical 2D-clustering of TCs in each layer using DBSCAN
- **Stage-2:** 3D-clustering relying on the longitudinal correlation of 2D clusters, by projecting the position of each 2D-cluster
- Stage-1 to Stage-2 x24 time-multiplexed (all data from one endcap processed by one FPGA)

Pflow @L1

hadron

Tracker-Calo Link

G.Petrucciani et al. (CMS)

Deep learning for L1 (and HLT)

HLS4ML: CERN/FNAL/MIT joint effort 20 To debut at Connecting The Dots 2018 in Seattle (March 2018)

The Level-1 Trigger system of a HEP experiment is already a large, preemptive, parallel inference and classification engine

In summary we (will) have...

Intelligent readout, carrying out data reduction (aka low-level reconstruction)

- Help reduce the throughput requirements
- Sophisticated reconstruction and selection algorithms at the first (synchronous) level
 - Can profit of progress in hardware from "big data" apps
 - Neural networks, deep learning
 - Dedicated hardware for classification
- Is low-power, high bandwidth readout still worth pursuing?
- Is it feasible or even desirable ?

Yes...

Silicon Photonics

- Use of silicon substrate to manipulate optical field
 - Promise of lower power and cost
- Industry: telecom applications, cluster interconnects, chip-to-chip...

• But...

High Level Trigger (aka Online Selection)

CMS: CERN-LHCC-2017-014

Traditionally working on **generalpurpose CPU**

- Performance improvement per year roughly linear (or slightly quadratic)
- 2017 to 2026: Factor 2.7
- Estimated number of servers for HL-LHC order of 10000 (after L1)
- A 40 MHz system would require O(100000) servers (assuming – optimistically – that Level1 rate reduction is five times "easier")
- Performance per \$: **optimistically** 10-15% progression per year

TDP would also be a problem

The answer: Heterogeneous Computing

Offload to optimized co-processors

- GPGPU for memory-local algorithms
 - Pattern recognition
 - Space partitioning containers
 - Image processing
- FPGA for transforms, feature extraction and inference/classification

- Traditional approach to instrument processor with offload engines
- Limits choice of hardware
- Forces early choice and backward compatibility
- Creates "live-locks"
- Preemptive reconstruction in dedicated co-processor "farms"
 - Choose the best hardware for the task
 - Add the right type of resources
 when needed
 - Easier upgrade

. . .

Processor

- High throughput market driven by AI applications
 - PCIe gen4: 15.7 Gbps per lane
 - Lots of GPU, dedicated links, coherence, remote DMA
 - Integration of HPC interconnects (InfiniBand, Omnipath...)
 - Large clusters with >100 Gb/s interconnects
- Classification/inference engines run best on FPGA
 - Need cache coherence
- Large memory throughput and volumes
 - New memory architectures
 - NVRAM with reasonable latency, with sizes in the TB range

AI market

A possible way forward

Distributed preemptive reconstruction via HPC interconnect Using state-of-the-art accelerated engines and algorithms Realtime HLT feature Realtime feature index queried to "queries" index select events, perform data quality monitoring, "scouting" analysis, etc... Store fragments Intelligent front-end into event Heterogeneous Front-end computing BX-rate (MHz) HPC Tracking at L1 L1 interconnect reduced Custom data Electronics Distributed Level-1 **Event Fragment** preemptive 'standardization" of FPGAμS Complete Event reco based trigger processors

The idea: bring the algorithm to the data

Realtime indexing, query, classification

DAQ Architectures– EM – IFDEPS 13.03.2018

Putting it all together

Assemble forefront technologies

(developed by others) (for commercial applications)

Preemptive online processing Fast feature search Real-time indexing Query-based selection

Spark

Кеу	Value
K1	AAA,BBB,CCC
K2	AAA,BBB
K3	AAA,DDD
K4	AAA,2,01/01/2015
K5	3,ZZZ,5623

Outlook

- HEP progress towards a trigger-less system is slow
 - It may not be necessary or even desirable to go all the way
 - The appearance of FPGAs with large I/O throughput, and the use of time-multiplexing, allow a "standardization" of the approach
 - And make possible the application of inference engines and other prevalent techniques
- At the subsequent step, i.e. HLT, a paradigm shift is necessary to accommodate and make the most of those technology advances in HTC
 - It is just as much about how we gather, manage, and store data as it is about the algorithms and hardware we use to process them
 - While L1 hardware and approach can benefit HLT as well, by boosting parallelism in a distributed heterogeneous computing environment...
- Need to deal with resource orchestration, and storage/access of the resulting feature collections
 - Real-time indexing and query-based systems a promising possibility

