

The Mu3e Data Acquisition System

Handling Terabits per second without hardware trigger –

Sebastian Dittmeier on behalf of the Mu3e Collaboration Physikalisches Institut – Heidelberg University IFDEPS – Annecy – 13.03.2018

INTTERNATIONAL MAX PLANCK RESEARCH SCHOOL

FOR PRECISION TESTS OF FUNIDAMENTAL SYMMETRIES

Trigger-less DAQ in HEP

o Trigger-less:

- Without hardware trigger
- Software-only event selection

o Data Acquisition challenges:

- High resolution
 Detectors with millions of channels
- High luminosities/rates
 Fast detectors, fast signal processing
- ➤ High data throughput
- o Why trigger-less data acquisition?
 - o Improve "trigger" efficiency (e.g. LHCb Run III upgrade)
 - High statistics required
 - for precision experiments (e.g. PANDA, Mu3e)

Martin

The Mu3e Experiment

Search for the charged lepton flavor violating decay $\mu^+ \rightarrow e^+ e^- e^+$

<u>Standard Model</u> Highly suppressed branching ratio BR_{SM} < 10⁻⁵⁴

Probe physics beyond SM Any observation is a clear sign for new physics!

Current limit on $\mu^+ \rightarrow e^+e^-e^+$ **BR**_{meas} < **10**⁻¹² (SINDRUM 1988)

Goal of Mu3e

Enhance sensitivity to branching ratios $\mathcal{O}(10^{-16})$

IFDEPS - Annecy - 13.03.2018

- Stopped muons decay in a solenoidal magnetic field of B = 1T
- Low momentum electrons: $p_e \leq 53 \text{ MeV/c}$
- > Thin silicon pixel tracking detector: precise momentum ($\sigma_p < 1.0 \text{ MeV/c}$) and vertex ($\mathcal{O}(100 \ \mu\text{m})$) measurement
- > Scintillating fibres and tiles: precise time information ($\sigma_t < 500 \text{ ps}$)

An Experiment at the Intensity Frontier

- For the final sensitivity goal of $\mathcal{O}(10^{-16})$ we need to observe $\mathcal{O}(10^{16})$ events
- High rate of muons, available at Paul-Scherrer-Institut (CH)

• Phase I: $\mathcal{O}(10^8 s^{-1})$:

- Existing Compact Muon Beamline
- Single event sensitivity goal: 2×10^{-15}

\circ Phase II: $\mathcal{O}(10^9 \text{ s}^{-1})$:

- o Future High Intensity Muon Beamline
- o Under investigation
- Sensitivity goal: 𝒪(10⁻¹⁶)

An Experiment at the Intensity Frontier \sub

- For the final sensitivity goal of $\mathcal{O}(10^{-16})$ we need to observe $\mathcal{O}(10^{16})$ events!
- o High rate of muons, available at Paul-Scherrer-Institut (CH)
- Phase I: *O* Measure and reconstruct all events
 - Existing > Trigger-less data acquisition
 - Single e
 2 × 10
 Continous readout of the full detector
 Online event reconstruction and filtering

• Phase II: $\mathcal{O}(10^{\circ} \text{ s}^{\circ})$:

- o Future High Intensity Muon Beamline
- o Under investigation
- Sensitivity goal: *O*(10⁻¹⁶)

Readout Bandwidth Requirements

o Hit rates derived from full detector simulation

- Pixel detector only: 2844 sensors = 178 MPixel
- Hit rates increase by a factor of 20 for Phase II

Muon stopping rate (Phase I)	100 MHz
Maximum hit rate of the busiest pixel sensor	1.5 MHz/cm ²
Average total pixel hit rate	1.06 GHz
Data rate due to pixel hits (32 bits per hit)	34 Gb/s
Data rate due to pixel noise	5.7 Gb/s $\cdot R_{noise,pix}$ /Hz
Total readout bandwidth	3.8 Tb/s

 $R_{noise,pix}$: Noise rate per pixel \ll 10 Hz

Mu3e Pixel Sensors – *MuPix*

o High Voltage Monolithic Active Pixel Sensors
o 180 nm HV-CMOS process (AMS AH18)
o Current Prototype: *MuPix8*

MuPix8 Readout Architecture

MuPix8 Readout Architecture

MuPix8 Readout Architecture

Clock and Reset Distribution

 Synchronous timestamps: Global synchronous clock and reset signal required
 Custom designed optical clock distribution system

- Via FMC Connector

Mu3e Front-end Board

o Arria V FPGA

Interface for up to 45 sensors
 LVDS links running at 1.25 Gb/s

 2 Samtec Firefly duplex x4 transceivers
 o FPGA Multi-Gigabit transmitters at 6.25 Gb/s
 o Receivers: Reset, clock signal, sensor configuration
 o Sensor ASIC clock distribution

First stage of data reduction

Front-end Firmware Description

Front-end Firmware Description

Front-end Firmware Description

Optical Components

o All transceivers tested extensively

- Front-end & clock distribution:
 Samtec Firefly (x4 duplex, x12 simplex) also in magnetic field (0.6 T)
- Switching board: MiniPod (x12 simplex)
- Receiving card: QSFP (x4 duplex)

Optical Data Transmission Tests

<u>Minipods</u>

- 12-fold optical transmitter and receiver
- o 1 m long multi mode fibre
- o 12 channels at 6.25 Gb/s
- \circ Error-free: BER < 10^{-16}

Samtec Firefly

- o 4-fold optical transceiver
- Tested setup:
 error free up to 8 Gbps
- \circ BER < 10⁻¹⁵

6 Gbps PRBS7 data after optical transmission with Samtec Firefly

48 x 6.25 Gb/s

Rx

Data merger

Tx

Rx

Switching Boards

∘ PCIe40 board (LHCb, ALICE) Rx • Arria10 FPGA o 48 optical Tx and Rx o 2 PCIe3 x8 interfaces o Delivery in 2018/2019

4 x 10 Gb/s

GPU Farm: Receiving Card

- Commercial DE5a-NET board (Terasic)
- o Large Arria10 FPGA
- Two banks of DDR3 memory
- o PCIe 3.0 x8 interface
- o 4 QSFP optical transceivers
- Daisy chain of optical links between PCs

GPU Filter Farm

o Time slices of 50 ns for track & vertex search

- ▶ Process $20 \cdot 10^6$ time slices per second
- o 12 filter farm PCs with one GPU each
- $_{\odot}$ Process at least $1.7 \cdot 10^{6}$ time slices per second
- ≻GPUs are ideal for this task!
- Thousands of cores
- o Optimal parallel performance
- o Best suited for many floating-point operations / second

o On-FPGA: Track preselection using geometrical criteria

Coordinate transformation

Direct memory access to PC memory

Direct memory access to GPU memory

Track fitting: *Triplet Fit* <u>arXiv:1606.04990</u>
 Multiple scattering dominated, linearized, can be parallelized

 \circ Vertex selection for signal topology: 2 e⁺ + 1 e⁻

 \circ Vertex selection for signal topology: 2 e⁺ + 1 e⁻

Implementation test on GTX 1080 Ti 2.0 \cdot 10⁶ time slices processed > required 1.7 \cdot 10⁶

Mu3e Pixel Readout Demonstrator

Pixel sensors Large prototype: MuPix8 *operational*

Front-end FPGA Prototype boards: Stratix IV *operational*

<u>Switchir g board</u> PCIe40 (LHCb development) *delive v 2018*

PC FPGA on PCIe card: Stratix IV

Mu3e Front-End Board Prototype

Mu3e Front-End Board Prototype

Hardware Operational Tests

Successful operation of eight MuPix8 in parallel on a test beam at DESY

- $_{\circ}$ Configuration of sensors \checkmark
- o Data transmission:
 - $_{\odot}$ Sensors to front-end \checkmark
 - \circ Front- to back-end \checkmark

 $_{\odot}$ Sensors respond to positron beam \checkmark

Summary

- Mu3e sensitivity goal requires high statistics
- ≻Trigger-less DAQ
- Three FPGA-based DAQ layers
- o All subsystems run synchronously
- Data reduction:
 From 3.8 Tb/s raw data to < 100 MB/s to disk

Sebastian Dittmeier - Mu3e DAO

Demonstrator readout tests successful

