

High bandwidth data transfer on and offchip for HEP: modeling, design and verification

Tomasz Hemperek, Hans Krüger

- Introduction
- Modeling
- Design
- Verification
- Ouput links
- Examples
 - DHP (Belle 2)
 - RD53A (ATLAS/CMS)
 - VeloPix (LHCb)

Moore's law in HEP (pixel detectors)

Name	D-OMEGA lon	LHC1	FE-I3	FE-14	RD53
Year	1991	~1996	~2005	~2011	2017/2019
Technology Node	3 µm	1μ	250 nm	130 nm	65 nm
Chip size	8.3x6.6 mm ²	8x6.35 mm ²	10.8x7.6 mm ²	10.2x19 mm ²	20x22mm ²
Pixel size	75x500 μm²	50x500 μm²	50x400 μm²	50x250 μm²	50x50 μm²
Pixel array	16x63	16x127	18x160	80x336	~400x400
Transistor count	???	800k	3.5M	80M	>500M

hemperek@uni-bonn.de

Memory Density

	\bigcirc
UNIVERSITÄT	BONN

Technology node	130nm	65nm	28nm
6T SRAM cell (um ²)	2.4	0.52	0.127
bit size in memory (um ²)	~ 3.2	~ 0.7	~ 0.16
10bit words in 100x100um	~ 310	~ 1430	~ 6250
NRI/MPW* (mm²)	\$1000-\$2000	\$3000-\$4000	\$8000-\$10000

Issues in pixel detector readout in HEP

- Time stamping (40MHz)
- Hit rate (<3GHz/cm²)
- Trigger rate (up to 4MHz)
- Wait time for trigger (up to 35us)
- Cooling (+40 to -30C)
- Cables (up to 6m to DAQ)
- Power delivery/support mass
- Data Rates (>2Gbits/s/cm²)
- Resolution (<15um)
- Radiation > 5MGry
- SEU/SET

Radiation levels:

- at 5 cm : ~15 MGy (2•10¹⁶ n_{eq}/cm²)
- at 25cm : ~1 MGy (10¹⁵ n_{eq}/cm²)

* estimates for 10years of operations

Hybrid Pixel evolution in HEP

UNIVERSITÄT BONN

hemperek@uni-bonn.de

Switch to big "D", little "A"

Audio Video BB RF ΤV M1 M4 Digital M2 **M**3 Analog BT LCD Controls Image WiFi KPD DSP Digital Processor Analog USB PMU Application Comm. **Functions** Mixed SIM Processor Processor ExM Memory PLI **Traditional Mixed-signal Design**

Physical hierarchy separates digital and analog Modern Mixed-signal Design Digital and analog distributed throughout design

Same pattern for HEP

UNIVERSITÄT BONN

hemperek@uni-bonn.de

Evolution of array organization

Traditional Design:

- design 1 pixel
- step and repeat identical copies
- custom made digital

ex. FE-I3 (250nm)

More Recent:

- design few-pixel region
- step and repeat identical copies
- synthesized digital

ex. FE-I4 (130nm)

Recent:

 synthesized entire design with analog IP in a hierarchical way

ex. RD53A (65nm)

hemperek@uni-bonn.de

Modeling - Introduction

Questions:

- How to portion pixel array (buffering and readout)?
- How wide buses?
- How fast clocks (domain crossing)?
- What data format/encoding?
- How to compress?
- How big the FIFOs and how many?
- What data processing?
- How much time to send and trigger?

UNIVERSITÄT BONI

Modeling – python (C++...)

UNIVERSITÄT BONN

https://gist.github.com/themperek/31720b7a186618b17f489a3ad504638c

Core-Column wait time, hit-rate=1Greg/s/cm2, trigger=4MHz

Simple and good for exploration. Use UVM?

hemperek@uni-bonn.de

Digital Flow – from digital perspective

UNIVERSITÄT BONN

The design (RD53A)

Top pad row (debug)

- Fully digital with analog IP
- Hierarchical
- Fully automated
- 1 day to resin and verify the whole chip

Verification Introduction

- Verification takes more time then design.
- It has to start before/together with the design.
- Failing a \$1M chip (65nm) is not a good idea.
- No way out for complex digital chips.

Verification Plan -> Most important part (trash in trash out)

UNIVERSITÄT BON

hemperek@uni-bonn.de

Universal Verification Methodology (UVM)

TEST

SCENARIO

TESTBENCH

TOP

MODULE

UVM

hemperek@uni-bonn.de

Formall verification ...

Very complex industrial standard

https://arxiv.org/pdf/1408.3232.pdf

Example for RD53A:

Verification – DAQ Integration

hemperek@uni-bonn.de

Work organization/procedures

- Branching for new features
- Poll request review on request
- Features and bugs discussions via issues system (not email)
- Continuous integration
- Agile development vs waterfall

master ~ RD53	Q Find File
Name	Last Update
doc doc	8 months ago
scripts	15 days ago
🖿 sim	9 clays ago
arc a	10 days ago
🕅 "gitignore	3 months ago
🗟 .gitlab-ci.yml	about a month ago
CONTRIBUTING.md	5 montha ago
README.md	3 months ago

UNIVERSITÄT BON

Output Links

Limitation is often cables no the transmitter.

hemperek@uni-bonn.de

Output Links – Line encoding

Considerations:

- Run length
- DC balance
- Hamming distance
- Support by DAQ
- Framing/Streaming
- Cables

Examples:

8b/10b:Ethernet, Fibre Channel, high-speed video applications

Ex. implemetation: Aurora 8b10b from Xilinx

64b66b: SONET and SDH telecommunication Ex. implementation: Aurora 64b66b from Xilinx

hemperek@uni-bonn.de

hemperek@uni-bonn.de

Output Links – Line Driver

UNIVERSITÄT BONN

M4

₹R_U

M2

IN -

OUT-

 V_{DD}

Ru

RD

M1

IN +

OUT+

Power: ~3-4mA Speed: ~1Gbit/s

Power: ~20-30mA Speed: >10Gbit/s

Power: lower then CML Speed: >10Gbit/s

Pre-emphasis

UNIVERSITÄT BONN

hemperek@uni-bonn.de

EXAMPLES

hemperek@uni-bonn.de

DHP - BELLE 2 Pixel Module

Examples – DHP

UNIVERSITÄT BONN

DHP - Modeling/Verification

UNIVERSITÄT BONN

hemperek@uni-bonn.de

Preemphasis Off

Preemphasis On

20m cables

ATLAS @ LHC

hemperek@uni-bonn.de

RD53A – ATLAS/CMS Prototype

hemperek@uni-bonn.de

50µm X 50µm Pixel floorplan

UNIVERSITÄT BONN

1) 50% Analog Front End (AFE) 50% Digital cells

2) The pixel matrix is built up of 8 x 8 pixel cores \rightarrow 16 analog islands (quads) embedded in a flat digital synthesized sea

3) A pixel core can be simulated at transistor level with analog simulator
4) All cores (for each FE flavour) are identical → Hierarchical verifications

Pixel array logic organization

basic layout unit: 8x8 digital Pixel Core → synthesized as one digital circuit

- One Pixel Core contains multiple Pixel Regions (PR) and some additional arbitration and clock logic
- Pixel Regions share most of logic and trigger latency buffering

Distributed Buffering Architecture (DBA):

- Distributed TOT storage (in pixel)
- Integrated with Lin and Diff FE

- Centralized TOT storage (in region)
- Integrated with Sync FE (Fast ToT)

RD53A - Centralized Buffer Architecture - 2x8

hemperek@uni-bonn.de

RD53A – Ouput Link

UNIVERSITÄT BONN

Configurable 3-tap pre-emphasis filter:

Cable limitedFiber -> radiation

The Low Power GBTX (LpGBTX)

- Low Power Dissipation and Small Footprint:
 - Target: 500 mW
- Bandwidth:
 - Low-Power mode
 - 2.56 Gb/s for the optical down link
 - 5.12 Gb/s for the optical up link
 - High-Speed mode:
 - 2.56 Gb/s for the optical down link
 - 10.24 Gb/s for the optical up link

UNIVERSITÄT BONN

VeloPix - LHCb

- Vertex detector surrounding collision region
 - In vacuum
 - Close to the beam: 5.1 mm
- From silicon strips to pixels
- New R/O chip VeloPix, derived from Timepix3
- In total 624 ASICs, ~41 Mpixels
- Trigger-less readout (~2.9 Tbits/s)

Examples – VeloPix

- Pixel matrix:
 - 256 x 256 pixels
 - 128 x 64 super pixels (2x4 pixels each)
 - @40MHz
- Packet-based architecture:
 - 8 pixels/packet + 9 bit time stamp → 30% reduction in data rate
- Data-driven readout:
 - 20 Mpackets/s/double column
- 40, 80, 160 and 320 MHz TMR clock domains in the periphery
- 1 to 4 configurable serializers (GWT)
- Similar to the GBT frame

hemperek@uni-bonn.de

Periphery data path

VeloPix - GWT

UNIVERSITÄT BONN

hemperek@uni-bonn.de

Example possibilities

- Integrate storage and data processing it single pixels:
 - pattern recognition
 - histogramming (in pixel spectral analysis)
 - conversion to photons -> compression
 - clustering and subpixel counting (COG)
 - infinite* dynamic range

- Move from digitally assisted analog design to analog assisted digital
- Chips are more complex with lot of memory and data processing
- New tools for design
- Different type of verification (mistakes are very expensive)
- High speed serial communication
- Lot of opportunities in exploring small feature size

UNIVERSITÄT

hemperek@uni-bonn.de

Design Flow – from analog perspective

UNIVERSITÄT BONN

SAR ADC IN 65nm - Layout

Only external sample signal needed!

Layout is not area optimal Possible de-cup under DAC?

Pre-emphasis

UNIVERSITÄT BONN

hemperek@uni-bonn.de

CML Cable Driver Implementation (RD53A)

Configurable 3-tap pre-emphasis filter

TAP configuration

• INV_TAP[2:1]

• EN_TAP[2:1]

CML output configuration

- EN
- TAP0_BIAS[9:0]
- TAP1_BIAS[9:0]
- TAP2_BIAS[9:0]

CML Cable Driver Implementation (RD53A)

- pre- and post-tap active
- DEL_POST= 3, DEL_PRE = 0)
- IN_MAIN bias =[3, 4, 5 mA)

Modeling – UVM/Verilog

A lot of work. Can be reused for verification.

http://ieeexplore.ieee.org/document/8069646/

hemperek@uni-bonn.de

Verification Plan

Most important part.

hemperek@uni-bonn.de

Waterfall vs Agile

Agile development interpreted in the waterfall model

Changing and unclear specifications?

hemperek@uni-bonn.de

Verification - Formal

// SystemVerilog Assertion

property p_arb; @(posedge clk) req |=> ##[0:2] gnt; endproperty assert property (p_arb);

Single Event Upsets ...

Design Flow

- Design in "big A small D" methodology
- Blocks designed and verified individually
- Full chip digital and mixed-signal verification
- Work synchronization with integrated Revision Control System
- Big chip = many difficulties with software and PDK!

Surface Level Decise	Functional Design and Verification			
system-Level Disign	Chip Planning			
	RTL Design and Verification	Design and Analysis		
Block Jowel Design	Synthesis and Verification	Circuit Simulation		
BIOLA-Level Design	Place and Route	Custom Layout		
	DRC, LVS, RCX			
Chip Assembly	Chip Assembly			
Physical Verification	Full Chip Physical Verification, Extraction, and Analysis			
System Verification	Full Chip System-Level Verification Analog, Digital, RF			