

Current and planned technical solutions at ESRF for high-throughput data acquisition and data management

> Pablo Fajardo on behalf of many ESRF staff with special contributions from Andy Götz, Laurent Claustre, Alejandro Homs, Armando Solé, Fernando Calvelo, Christian Nemoz and Wassim Mansour

The European Synchrotron

The current situation is the result of a combination of

- Various initiatives and action taken by various groups in different times
- There are no a fully homogeneous schemes

High data throughput detectors @ ESRF

Commercial

Non commercial

> 1 GByte/s

PSI/Eiger 2M ~ 8 GByte/s

BASIC DATA ACQUISITION SCHEME AT ESRF

VARIOUS DATA STORAGE SCHEMES

٠

ESRF STORAGE NETWORK

The European Synchrotron | ESRF

DATA ANALYSIS

- Any low latency on-line data treatment is applied or managed by the detector server (via LIMA):
 - The LIMA library can implement a pipeline of data manipulation operations by itself that can be extended with plug-ins.

- And in principle LIMA can 'delegate' to other processes for more complex or resource demanding processing (i.e GPU based). A few algorithms have been adapted to be included in the 'on-line processing pipeline' although they are still not in operation:
 - Azimuthal integration (powder diffraction, SAXS, ...)
 - Time autocorrelation (XPCS)
- Today, in practice the data analysis processes and sequences take data from disks (storage)
 - o In some cases (Tomography, MX, BioSAXS) data analysis is triggered by automated workflows
 - Although in most cases the analysis is **initiated manually** by the users.
- In more and more cases the users cannot take the data with them and do the analysis at home

Experimental data need to be properly managed to allow:

- Linking to publications
- Re-analysis
- Verification and anti-fraud
- New research
- Preservation of unique data sets
- Comply with EU Open Data requirements

Adoption and implementation of an official 'Data Policy'

http://www.esrf.eu/datapolicy

- 1. The ESRF shall act as a custodian of the data
- 2. All raw data will be curated in a well defined format
- 3. Metadata is captured automatically and resides within the raw data files and or on-line catalogue
- Access to raw data is restricted to the experimental team for a maximum of 3 years (embargo period)
- 5. Embargo period can be **extended** on request
- 6. ICAT will link the data to the proposal and publication
- 7. Ownership of all results (intellectual property) derived from the analysis of the raw data is determined by the contractual obligations of the person(s) performing the analysis
- 8. Analysis of openly accessible data **must acknowledge** the source of the data and cite its unique identifier and any publication linked to the same raw data.

METADATA COLLECTION AND BUILDING A SESSION DATA SET

IMPLEMENTATION OF THE ESRF DATA POLICY

- Metadata Collection
 - Automatic capture of data and metadata
- Data archiving
 - Long term archiving in tape library during 10 years
- Raw Data in HDF5
 - HDF5 used as primary format for raw data
- Open access of data
 - Persistent identifier (DOI) associated to data from peer review proposals and open access data after an embargo period of 3 years

Current Status

• Data policy already implemented on 11 beamlines, 7 in progress and 12 planned for 2018

Ongoing developments for high-throughput data acquisition

- Distributed LIMA library
- RDMA based framework (RASHPA)

World-wide collaboration: synchrotrons, large facilities, R&D institutes, detector manufacturers. In 'production' since 2010

Among its Features:

- Provide common user functionality
- Separate hardware control from software tasks
- Data saving various file formats (EDS, HDF5, ...)
- Includes a multi-threaded processing framework:

Geometric transformations

- ✓ Frame reconstruction, stripe concatenation
- Rotation, Flipping, Binning, Region-of-Interest
- ✓ Image masking

Basic Image processing

- ✓ Frame accumulation
- ✓ Background subtraction, flat-field corrections

Data compression (LZ4, gzip)

User-defined operations can be added (plug-ins)

Highly optimised usage of computer resources

Supported Detectors ESRF Frelon & Maxipix Dectris Pilatus2&3, Eiger GigE: Basler, PointGrey, Prosilica, Ueve Rayonix, ADSC, MarCCD STFC: Hexitec, Ultra, XH, Xspress3, Merlin PCO.dimax, edge, 2K, 4K

Andor I-Kon, Zyla, Neo

PerkinElmer, Dexela

Aviex, Pixirad, imXPAD

- Hamamatsu Orca
- v4l2

Lima Meta camera (4x Maxipix)

PSI detectors: Eiger 2M & 500K

LIMITATIONS FOR HIGH DATA THROUGHPUT DAQ

Today at ESRF: data is streamed through a LIMA based 'detector server'

Processing very high throughput data streams is challenging because:

- **Single computer** (even though LIMA is highly multithreaded)

→ Multicomputer versions of detector servers (distributed LIMA)

- All image manipulation is 100% software based

→ Hardware assisted DAQ and image manipulation (RASHPA)

Tuning the performance of the LIMA server to achieve full performance for a PSI/Eiger 500k module took **several months** to highly qualified DAQ software expert (Alejandro Homs)

DISTRIBUTED LIMA

LIMA Development Roadmap

General improvements:

- Better packaging and deployment
- Image display: flexible GUI layouts with SILX framework
- Data storage: Common API for different saving streams
- Introduce new data types (not only images)

High-performance detectors:

- · Memory management: improved control of acquisition and processing buffers
- Include branches in frame processing pipeline
- Multi-backend computer support
 - > Distributing full image frames among computers
 - > Dispatching partial frames (modules?) to separate computers

RDMA-based Acquisition System for High Performance Applications

Project initiated within EU grants: CRISP (2011-2014), EUCALL (2015-2018)

- Development and validation of concept and demonstrators
- First implementation with a real detector is in progress (SMARTPIX)

Key/special features:

- Data is pushed into destination by Remote DMA (Direct Memory Access)
 - Zero-copy, minimise software intervention
- Multiple data transfer processes can run simultaneously
 - Data dispatch various purposes: data storage, pre-processing, display, ...
- Implements detector related data manipulation from the source (the detector)
 - Geometry related (image reconstruction/aggregation, ROI extraction, ...)
- Software configurable
 - Number of data streams, destination buffers, data selection and dispatching

RASHPA COMPONENTS

Main components

- RASHPA controller(s) embedded in the detector
 - Implemented by CPU+FPGA
 - · Each module must implement its controller
- RDMA-capable data link
 - High throughput and routable (switches)
- Backend computers (System manager + Data receivers)
 - Executing librashpa (Linux library)

Tested data links:

- PCle over cable (copper or fiber optics)
 - Fits all the functional requirements
 - But too limited availability of commercial components

• Ethernet

- Implementing efficient RDMA protocols is not so straightforward
 - RoCEv2 (UDP based) is the best candidate
- But unbeatable in what respects to availability and cost of high-performance hardware
- Recently validated our implementation of 100GbE UDP transfers (FPGA-FPGA, FPGA-NIC)

THANK YOU!

