Current and planned technical solutions at ESRF for high-throughput data acquisition and data management

Pablo Fajardo on behalf of many ESRF staff with special contributions from Andy Götz, Laurent Claustre, Alejandro Homs, Armando Solé, Fernando Calvelo, Christian Nemoz and Wassim Mansour
Overview of data acquisition and management at ESRF
- Data acquisition, storage schemes and data analysis
- ESRF data policy and management strategy

Developments for high-throughput data acquisition
- Distributed LIMA library
- RDMA based framework (RASHPA)
The current situation is the result of a combination of:

- Various initiatives and action taken by various groups in different times
- There are no a fully homogeneous schemes

High data throughput detectors @ ESRF

Commercial

- pco.edge
- > 1 GByte/s

Non commercial

- PSI/Eiger 2M
- ~ 8 GByte/s
BASIC DATA ACQUISITION SCHEME AT ESRF

- Detector
- Detector Server
- Single Computer
- On-line processing and buffering
- Storage

Linux or Windows (depends on detector SDK)
Various types of storage schemes

One or multiple links depending on the detector
Built on the LIMA library for 2D detectors

One or multiple links depending on the detector

Built on the LIMA library for 2D detectors
VARIOUS DATA STORAGE SCHEMES

Data sent directly to Central storage

Detector server

Data buffers

SSDs

10 GbE

10 GbE

10 GbE

GPFS

Central Storage

LBS (Local Buffer System)

RAM disk

Local Buffer System (LBS)
- Up to 540 GB RAM disks
- Transfer to central storage is automated

Data saved locally in the detector server
- Up to 1 TB SSD
- Transfer to central storage is initiated manually or semiautomatically
ESRF STORAGE NETWORK

ESRF HighSpeed Storage Network
January 2018

Beamlines
42x2x10G

Nx10G
8x40G
4x40G

High-Speed Storage
(GPFS → GZ)

Compute Clusters
Servers
Compute Clusters
Servers
Storage (DSS)

Storage
(GX, GY)

Nx10G

DC054

One link between Two couples = 4 links

4x40G

Beaml ine
concentration
& Storage Network
Backbone

Nx10G private

CR106

2x10G

Infiniband

Backup Servers

nxFDR10 = 40G

Nx10G

2xFDR10 = 40G

Fiber Channel

Tape Library
(2 × L8500)

Infiniband

Backup Servers

40G = 40Gbe (40GBaseLR)
10G = 10Gbe (10GBaseLR)
1G = 1000BaseSX or 1000BaseLX
Infiniband
Fiber Channel FC8 or FC16
Any low latency **on-line data treatment** is applied or managed by the detector server (via LIMA):

- The LIMA library can implement a pipeline of data manipulation operations by itself that can be extended with plug-ins.

- And in principle LIMA can ‘delegate’ to other processes for more complex or resource demanding processing (i.e GPU based). A few algorithms have been adapted to be included in the ‘on-line processing pipeline’ although they are still not in operation:

 - Azimuthal integration (powder diffraction, SAXS, …)
 - Time autocorrelation (XPCS)

Today, in practice the data analysis processes and sequences take **data from disks** (storage)

- In some cases (Tomography, MX, BioSAXS) data analysis is triggered by **automated workflows**

- Although in most cases the analysis is **initiated manually** by the users.

In more and more cases the users **cannot take the data with them** and do the analysis at home.
DATA MANAGEMENT

Experimental data need to be properly managed to allow:

- Linking to publications
- Re-analysis
- Verification and anti-fraud
- New research
- Preservation of unique data sets
- Comply with EU Open Data requirements

Adoption and implementation of an official ‘Data Policy’
1. The ESRF shall act as a **custodian** of the data

2. All raw data will be curated in a **well defined format**

3. **Metadata** is **captured automatically** and resides within the raw data files and or on-line catalogue

4. Access to raw data is **restricted** to the experimental team for a **maximum of 3 years** (embargo period)

5. Embargo period can be **extended** on request

6. ICAT will link the data to the proposal and publication

7. **Ownership** of all results (intellectual property) derived from the analysis of the raw data is determined by the contractual obligations of the person(s) performing the analysis

8. Analysis of openly accessible data **must acknowledge** the source of the data and cite its unique identifier and any publication linked to the same raw data.
METADATA COLLECTION AND BUILDING A SESSION DATA SET

(very simplified scheme)

Experimental session data set
- Exposed as a single HDF5 file
- Assignment of a DOI (Digital Object Identifier)
IMPLEMENTATION OF THE ESRF DATA POLICY

- **Metadata Collection**
 - Automatic capture of data and metadata
- **Data archiving**
 - Long term archiving in tape library during 10 years
- **Raw Data in HDF5**
 - HDF5 used as primary format for raw data
- **Open access of data**
 - **Persistent identifier** (DOI) associated to data from peer review proposals and open access data after an embargo period of 3 years

Current Status

- Data policy already implemented on 11 beamlines, 7 in progress and 12 planned for 2018
Ongoing developments for high-throughput data acquisition

- Distributed LIMA library
- RDMA based framework (RASHPA)
World-wide collaboration: synchrotrons, large facilities, R&D institutes, detector manufacturers. In ‘production’ since 2010

Among its Features:

- Provide **common user functionality**
- Separate hardware control from software tasks
- Data saving various file formats (EDS, HDF5, …)
- Includes a **multi-threaded processing framework**: **Geometric transformations**
 - Frame reconstruction, stripe concatenation
 - Rotation, Flipping, Binning, Region-of-Interest
 - Image masking

 Basic Image processing
 - Frame accumulation
 - Background subtraction, flat-field corrections

 Data compression (LZ4, gzip)

 User-defined operations can be added (plug-ins)
 - Highly **optimised usage of computer resources**

Supported Detectors

- ESRF Frelon & Maxipix
- Dectris Pilatus2&3, Eiger
- GigE: Basler, PointGrey, Prosilica, Ueye
- Rayonix, ADSC, MarCCD
- STFC: Hexitec, Ultra, XH, Xspress3, Merlin
- PCO.dimax, edge, 2K, 4K
- Andor I-Kon, Zyla, Neo
- Hamamatsu Orca
- v4I2
- PerkinElmer, Dexela
- PSI detectors: Eiger 2M & 500K
- Lima Meta camera (4x Maxipix)
- Aviex, Pixirad, imXPAD
Today at ESRF: data is streamed through a LIMA based ‘detector server’

Processing very high throughput data streams is challenging because:
- **Single computer** (even though LIMA is highly multithreaded)
 → **Multicomputer versions of detector servers** (distributed LIMA)
- All image manipulation is **100% software based**
 → **Hardware assisted DAQ** and image manipulation (RASHPA)

Tuning the performance of the LIMA server to achieve full performance for a PSI/Eiger 500k module took **several months** to highly qualified DAQ software expert (Alejandro Homs)
LIMA Development Roadmap

General improvements:
- Better packaging and deployment
- Image display: flexible GUI layouts with SILX framework
- Data storage: Common API for different saving streams
- Introduce new data types (not only images)

High-performance detectors:
- Memory management: improved control of acquisition and processing buffers
- Include branches in frame processing pipeline
- Multi-backend computer support
 - Distributing full image frames among computers
 - Dispatching partial frames (modules?) to separate computers
RASHPA (HARDWARE ASSISTED DAQ)

RDMA-based Acquisition System for High Performance Applications

- Development and validation of concept and demonstrators
- First implementation with a real detector is in progress (SMARTPIX)

Key/special features:
- Data is pushed into destination by Remote DMA (Direct Memory Access)
 - Zero-copy, minimise software intervention
- Multiple data transfer processes can run simultaneously
 - Data dispatch various purposes: data storage, pre-processing, display, …
- Implements detector related data manipulation from the source (the detector)
 - Geometry related (image reconstruction/aggregation, ROI extraction, …)
- Software configurable
 - Number of data streams, destination buffers, data selection and dispatching
Main components

- **RASHPA controller(s)** embedded in the detector
 - Implemented by CPU+FPGA
 - Each module must implement its controller
- **RDMA-capable data link**
 - High throughput and routable (switches)
- Backend computers (**System manager + Data receivers**)
 - Executing *librashpa* (Linux library)

Tested data links:

- **PCIe over cable** (copper or fiber optics)
 - Fits all the functional requirements
 - But too limited availability of commercial components

- **Ethernet**
 - Implementing efficient RDMA protocols is not so straightforward
 - RoCEv2 (UDP based) is the best candidate
 - But unbeatable in what respects to **availability and cost** of **high-performance** hardware
 - Recently validated our implementation of **100GbE UDP transfers** (FPGA-FPGA, FPGA-NIC)
THANK YOU!