

IFDEPS – First Operation Experiences With New Detectors

European

The Large Pixel Detector for the European XFEL: overview of the system and experience of operation at the FXE beam line

Matthew Hart

Science and Technology Facilities Council Rutherford Appleton Laboratory

LPD Introduction

Large Pixel Detector

- Built by Technology Department, Detector Division for the European XFEL
- 1 Megapixel 500um pixels
- 4.5MHz frame rate
- High dynamic range, 1 to 1x10⁵ photons (12keV) per pixel per pulse. Using parallel gain stages.
- **512 frame memory depth** continuously stores images, overwriting whenever a veto is received.
- Output data rate ~10GByte/s per megapixel

The LPD megapixel detector.

The Components

The LPD ASIC

- 512 Channels per ASIC
- Preamplifier with 50pF feedback 10⁵ 12keV photons
 - An additional 5pF high gain mode gives sub photon noise performance at the expense of some dynamic range.
- 100x, 10x and 1x parallel gain stages
 - The best gain for each pixel is selected by the DAQ system during readout.
- 512 frames of memory for each channel and gain
 - · Veto System used to make best use of memory
- 16 ADCs 12 Bit SAR
- 100MHz LVDS digital output
- Built on IBM 130 nm in 2012

Super-module loading

LPD Testing at Diamond

An LPD Super-model setup on B16.

LPD imaging the Diamond Hybrid pulse

- Diamond Hybrid mode a good tool for testing and calibrating high speed detectors at low flux.
- Rest of the fill causes problems. Is an • ESRF style 2-4 bunch mode possible?

Diamond Hybrid fill mode. Synchronized with LPD running at 3.8MHz

LPD at Hera South

LPD Shipped to Hera South – Feb 27th 2017 Operational at Hera South - March 8th 2017

Integration

STFC Train Builder

STFC Detector Division

- Experienced in delivering challenging power supplies and cooling
- Designed the Train Builder, Responsible for handling the data from all XFEL detectors
- Software fully compatible with XFEL Karabo. Also triggering and timing with XFEL Clock & Control

LPD 1M status log data for the month of February 2017

Science & Technology Facilities Council

Early Calibration Efforts

	101	SE					24
		12					
23						-	16
				1			
			Ŧ			-	8
			1	ia a	a de		
						-	0
6.25	4			3			

Noise			
(ADU)	100x, 5pF	10x, 5pF	1x, 5pf
Q1M1	11.81	I 3.71	2.51
Q1M2	11.72	2 3.69	2.5
Q1M3	17.23	3 7.24	2.42
Q1M4	11.73	3.74	2.54
Q2M1	15.25	5 9.88	8.34
Q2M3	11.7	7 3.71	2.51
Q2M4	12.09	3.78	2.52
Q3M2	12.98	6.19	4.69
Q3M3	18.02	2 11.17	10.39
Q3M4	11.72	2 3.69	2.53
Q4M1	30.26	6 20.97	21.39
Q4M2	18.21	I 4.61	2.65
Q4M3	11.63	3.69	2.52
Q4M4	11.67	7 3.7	2.53

Credit: **Philipp Lang**. Detector Scientist LPD lead at XFEL

- Automated tested within the Karabo control environment.
- Updates detector calibration database
- Keeps track of detector health

Early Calibration Efforts

Credit: **Philipp Lang**. Detector Scientist LPD lead at XFEL

Dark Image Deduced Bad Pixels – High Gain

- bad pixels are pixels that:
 exceed offset thresholds
 exceed noise thresholds
- most modules have less than 1% bad pixels
 - exception: Q1M3,Q3M3, Q4M1

Early Calibration Efforts

Relative Gain

- Relative gain deduced from charge injection run via linear fit
 - 2 days run time
 - 3 TB of data
 - Current data non-optimal settings
 - Needs to be cross-calibrated with flat fields

Credit: **Philipp Lang**. Detector Scientist LPD lead at XFEL

0.16

LPD 1M Final Installation

Delivery of LPD to the XFEL experimental hall

LPD @ FXE

Christian Bressler

Frederico Alves Lima

Andreas Galler

Peter Zalden

Dmitry Khakhulin

LPD Lead: Philipp Lang

FXE – Femtosecond X-ray Experiments

Ultrafast photo-induced processes in liquids and solids

1st LPD Commissioning Beam Time

- Last weekend 4th and 5th March. 2x 12 hour shifts
- Main goals
 - Perform timing calibration sync detector and machine
 - Trial some flat field setups and gather data for gain corrections.
 - Take diffraction reference images to verify **positional** calibration.

Beam Pipe Alignment

Machine Setup

Science & Technology Facilities Council

LPD images apart

LPD First Commissioning time at FXE

Step 1 – Timing calibration

- 4.5MHz = 222nsec from pulse to pulse but only 90nsec for integration. The rest is reset.
- Bad pulse timing can lead to image artefacts and increased noise

Flat Field Tests

Flat(ish) field from copper fluorescence Approx. 50-100 photons per pixel with good timing

Flat Field With Mask

Dynamic Range Sweep

- Stressed full dynamic range using full beam intensity with various scattering or diffracting configurations
- Auto gain selection performed by in detector DAQ.

LaB6 Diffraction – Alignment Calibration

Data analysis to be continued...

First users at FXE

15.11.2017, Dmitry Khakhulin, FXE Instrument

Laser-induced difference scattering

in the first pulse of the train

Pump-probe Scattering on Cu-complex solution in THF (Experiment #2052)

28.09. – 02.10.2017 Grigory Smolentsev (PSI)

30 bunches/train, 9.3 keV, ~100uJ/pulse, focused to ~20 um

Correlated spin and structural dynamics in the recombination of nitric oxide (NO) to deoxy-Myoglobin in physiological media (Experiment #2072)

23.11. – 27.11.2017 Dominik Kinschel (EPFL)

Feedback from users

- No major detector artefacts spotted
- LPD used most the time, good reliability
- Data saved to storage very effectively
- Live data fast feedback more of a challenge – but mostly available.

Requests

- More live data. E.g. Integrated curves, image measurables (ROI ratios, sums etc)
- More robust beam pipe alignment

What Next For LPD

Current work

- Spare Parts for the 1M system work has started to supply 100% spares
- Support agreement for 5 years

Opportunities

- Good potential for LPD ASIC V3 Upgrade to fit within the current LPD ecosystem.
- Demand for a ¼M or 1/16M system
 Smaller, more flexible to adapt to experimental demands.
- GaAs and high flux CZT Allow LPD to be used at higher energies or greater dose

LPD in 10 years?

- LPD should still be working! built with 10 year operation in mind. But only ever at 4.5MHz
- European XFEL will move to
 1MHz continuous. How would LPD
 look?
- New challenges More power, More data, Smarter electronics
- LPD uses too much power 12kW effort needed to avoid scaling this.
- Innovation in interconnect may hold alternative options to the conventional Hybrid detector
- DAQ (FPGAs) to move off detector head.

