WAVELENGTH DISPERSIVE SPECTROMETERS: LARGE-SCALE-FACILITY APPLICATIONS

http://www.xraylab.fi/

Simo Huotari Department of Physics University of Helsinki, Finland

Need of a eV to sub-eV energy resolution for the emitted/scattered radiation

No x-ray detector capable of that

 \Rightarrow crystal x-ray optics

EARLY SPECTROGRAPHS (1920-)

Bragg, Seeman, ... (photographic rector film. ...

 λ_2

 $n\lambda = 2d\sin\theta$

Sample/source

Crystal

THE MULTIPLE CRYSTAL X-RAY SPECTROGRAPH

BY JESSE W. M. DUMOND AND HARRY A. KIRKPATRICK

ABSTRACT

The need for improvements in scattered x-ray spectroscopic technique along the lines of increased intensity and contrast is discussed and a new instrument composed of fifty small units, each a Seeman Spectrograph in itself cooperating to form a single spectrogram, is described in detail. The technique of adjusting the instrument is also described.

DuMond & Kirkpatrick, Review of Scientific Instruments 1, 88 (1930), doi: 10.1063/1.1748677

POINT-BY-POINT SCANNING OF SPECTRA

Figure courtesy of Saint-Gobain crystals

ANODIC BONDING TO A CURVED **GLASS SUBSTRATE**

Verbeni et al. Journal of Physics and Chemistry of Solids 66 (2005) 2299-2305

VON HAMOS GEOMETRY

VON HAMOS @ LCLS (CXI)

XES Cornell-SLAC Pixel Array Detector module composed of four 185 \times 194-pixel CMOS ASICs (pixel size is 110 \times 110 μ m²) bump-bonded to high-resistivity silicon diodes

Roberto Alonso-Mori et al. PNAS 2012;109:47:19103-19107

Figure courtesy of Christian Bressler, European XFEL, shared for this occasion

VON HAMOS AT EUROPEAN XFEL FXE instrument / Christian Bressler et al.

30 bunches, 9.3 keV, ~100uJ/pulse, focused to ~20 um

European XFEL

GreatEyes CCD detector

Slide courtesy of Christian Bressler, European XFEL, shared for this occasion

Comparative Resolution

High resolution, yes, but how about harmonic rejection?

From Rene Bes

et al, submitted

Ge(777)

Spectra with

Amptek CdTe

Ge(555)

+ Ge $K_{\alpha,\beta}$

10

140

120 -

100 -

80 .

60 -

40

20 -

0

Ge(888)

15

Picking up Ge(999) reflection from this mess without a decent EDS... not possible!

+need to combine with1D or 2D imaging capability

Ge(999) <u>Detector is still the most</u> crucial element!

25

20

Energy (keV)

What determines the energy resolution?

- finite source size x $\Delta E/E = x/R \cot \theta$
 - crystal properties
 - Darwin width for flat crystals
 - Bending causes elastic stresses, $\Delta E \propto d/R$

ULTIMATE ENERGY RESOLUTION / PERFECT CRYSTAL

Elastic bending \Rightarrow strain Si(660) reflectivity curves near backscattering, $\theta \approx 88^{\circ}$ $\frac{\Delta E}{E} \approx \frac{d}{R} \; (\cot^2 \theta - \nu)$ R = 100 m-R=10 m **-**R=2 m 0.8 R=1 m $\nu = Poisson ratio$ Reflectivity 9.0 0.2 www. -0.2 0.2 0.4 0.6 0 Energy transfer (eV) R=1 m Si spherically bent Taupin (1964), Takagi (1962,1969)

Implementation in XOP

R=1 m Si spherically bent crystal, R. Verbeni (ESRF)

- Diffraction curve for a • macroscopic elastically bent crystal – both with finite area and finite thickness
- Spherical bending causes angular compression \rightarrow contribution to strain proportional to $(r/R)^2$

Ari-Pekka Honkanen et al., J. Synchrotron Radiat. 11, 762 (2014) J. Appl. Cryst. 49, 1284 (2016)

 C_{ii} =stiffness tensor S_{ii} =compliance tensor

Study on the reflectivity properties of spherically bent analyser crystals J. Synchr. Rad. 21, 762 (2014)

Ari-Pekka Honkanen,^a Roberto Verbeni,^b Laura Simonelli,^b Marco Moretti Sala,^b Giulio Monaco^b and Simo Huotari^a

Department of Physics, P. O. Box 64, FI-00014 Helsinki, Finland, and ^bEuropean Synchrotron Radiation Facility, B. P. 220, F-38043 Grenoble cedex, France

J. Appl. Cryst. 49, 1284 (2016)

Quantifying angular strain

Distribution of energy shifts caused by angular strain Si(660) in near backscattering, E=9.7 keV, R=1 m

RESOLUTION FUNCTION CORRECTION

(Honkanen, pixelwise compensation method) J. Synchr. Rad. 21, 762 (2014)

DICED CRYSTALS

Not bent, instead: several small flat crystallites (each ~mm²) to approximate the curved surface

In Rowland geometry Energy resolution set by Darwin width FWHM ~1 meV @20 keV)

Blasdell and Macrander, Rev. Sci. Instrum. 66, 2075 (1995)

Masciovecchio et al. Nucl. Instrum. Meth. B 111, 181 (1996); Nucl. Instrum. Meth. B 117, 339 (1996)

Figure: ESRF crystal analyzer lab; Roberto Verbeni et al.

Diced Analyzers

Energy resolution ~ 1 meV @ 20 keV Cube size 0.8 mm x 0.8 mm x 3 mm Curvature radius 1 m to >10 m

> flat crystallite size exaggerated for clarity

STRESS-RELIEVED CRYSTALS

ESRF Crystal Lab

R=0.5 m (cf. standard R=1 m up to now)

150 μ m thick wafer cut into 15 mm slices

Rovezzi et al., Review of Scientific Instruments **88**, 013108 (2017)

STRESS-RELIEVED CRYSTALS

Modern instruments

Cover page of Journal of Synchr. Radiat. March 2017 : **Huotari et al., JSR 2017**

Spectrometer located at European Synchrotron Radiation Facility (ESRF, Grenoble, France)

Beamline ID20: Energy range 4-20 keV

inelastic x-ray scattering
(resonant and non-resonant)

x-ray emission spectroscopy

high-energy-resolution fluorescence detected XAS

vite JSR

IUCr Journals | Wiley

ID20@ESRF

Roberto Verbeni and his 72 analyzers

Credit: ID20 team (Laura Simonelli, M. Moretti Sala, Ali Al-Zein, R. Verbeni, M. Krisch, G. Monaco, et al.) 3 x 4 Johann spherically bent analyzer crystals in a module

mature

LETTERS PUBLISHED ONLINE: 29 MAY 2011 | DOI: 10.1038/NMAT3031

Direct tomography with chemical-bond contrast

Simo Huotari^{1,2}*, Tuomas Pylkkänen^{1,2}, Roberto Verbeni¹, Giulio Monaco¹ and Keijo Hämäläinen²

IMAGING/SPECTROSCOPY WITH 2D DETECTOR + CRYSTAL OPTICS

SOFT – TENDER – HARD X-RAYS

ULTIMATE ENERGY RESOLUTION BY DARWIN WIDTH

SOFT X-RAY SPECTROMETERS

- Natural crystals (Bragg) are not an option
- Grazing incidence concave diffraction gratings with variable line spacing (VLS)

SOFT INELASTIC X-RAY SCATTERING (SIX) AT NSLS-II

Resonant inelastic x-ray scattering at an unprecedented energy resolution for unrivaled sensitivity to low-energy collective excitations.

- 135-2300 eV energy range with
 0.6 μm (V) x 6 μm (H) focus
- Resolving power up to 100,000
- Moving 15-m long arm for unbroken access to full range of momentum transfers

Goal: ΔE=15 meV at 1,000 eV - Sample cooling to ~15 K Slide courtesy from NSLS-II / Ignace Jarrige, Joe Dvorak et al. shared for this occasion

SIX OPTICAL DESIGN Slide courtesy from NSLS-II / Ignace Jarrige et al.

- M5: Horizontally collimating mirrors located close to sample for large solid angle
- M6: Vertical focusing mirror for virtual source for grating
- M7: Vertical deflecting mirror ⇒ beam outgoing angle constant

Slide courtesy from NSLS-II / Ignace Jarrige, Joe Dvorak et al. shared for this occasion

SIX SPECTROMETER @ NSLS-II

Slide courtesy from NSLS-II / Ignace Jarrige, Joe Dvorak et al. shared for this occasion

Large area in-vacuum detector for XES, ESRF ID26

M. Kocsis, M. Rovezzi, B. Detlefs, P. Glatzel, ESRF

Slide courtesy from ESRF / Pieter Glatzel et al., shared for this occasion Energy 1.5—5.5 keV; very low electronic noise, high quantum efficiency (>80%)

- No suitable detector on the market → Inhouse
- 16 vertical wires gas flow proportional counter detector
- Gas: 15% CO₂ in Ar
- Vacuum compatibility: flexible hoses (inverse vacuum), thin polymer entrance window

M. Kocsis, M. Rovezzi, B. Detlefs, P. Glatzel, ESRF

Detector area at 35°/500 mm bending radius \cong 50 x 40 mm²

Slide courtesy from ESRF / Pieter Glatzel et al., shared for this occasion

THANK YOU!

Slides of spectrometers around the world:

NSLS-II (SIX): Ignace Jarrige, Joe Dvorak, SIX team

EuXFEL (FXE): Christian Bressler, XFEL team

ID26 in-vacuum spectrometer: Pieter Glatzel, M. Kocsis, B. Detlefs, M. Rovezzi, ID26/ESRF team

ID20: R. Verbeni, M. Moretti Sala, Ch. Sahle, L. Simonelli, C. Henriquet, M. Krisch, G. Monaco, ID20/ESRF

Team in Helsinki:

Ari-Pekka Honkanen, Rene Bes, Taru Ahopelto, Sami Ollikkala, et al.