

Development of a Spectroscopic X-Ray Imaging Camera

Dr. Matthew C. Veale

11 – 14 March 2018 – Annecy, France

The Technology

Cd(Zn)Te Detectors

- > High density
- Wide band gap (room temp)
- Good electron transport
- Small pixel fabrication

HEXITEC ASIC

- > 80 x 80 pixels
- > 250 μm pixel pitch
- ➢ High Gain: 2 200 keV
- ➤ Low Gain: 6 600 keV
- Energy Resolution ~ 800 eV
- Interconnect @ STFC

How Does it Work?

- The ASIC is flip-chip-bonded to the Cd(Zn)Te.
- X-rays generate electron-hole pairs.
- Carriers drift under the applied electric field.
- Charge induced on pixels during drift.

Simplicity = Spectroscopy

- Our design philosophy was simplicity.
- Design was optimised for <u>high resolution</u> <u>spectroscopy, not rate</u>.
- Charge sensitive preamp with leakage compensation.
- 2μs shaper stage.
- Peak hold circuit → V = kE.

Spectroscopic Performance

- 1mm Acrorad CdTe @ 30°C.
- > 99% of pixels have a FWHM_{@60keV} of < 2 keV.
- Mean FWHM = 0.8 keV.

Spectroscopic Performance

Am-241

Count Rate Limitations

- Readout @ 10 KHz.
- Pixel Size = 250 μm
- Max Rate = 1.6×10^5 ph s⁻¹ mm⁻² ??

Count Rate Limitations

- Readout @ 10 KHz.
- Pixel Size = 250 μ m
- Max Rate = 1.6×10^5 ph s⁻¹ mm⁻² ??
- In reality $< 2.0 \times 10^4$ ph s⁻¹ mm⁻².
- Need low occupancy for charge sharing.

HEXITEC: GigE System

- 3-side-buttable module design.
- 2015: Plug-and-Play GigE system
- Designed for easy integration.
- Systems available commercially.

Home

Products

Software Consultancy

About Us

News

Contact Us

Careers

HEXITEC DETECTOR

08 August, 2016 / Comments Off / in Product / By QD

A Fully Spectroscopic Hard X-Ray Imaging Detector

The HEXITEC detector measures the energy and position of every incident photon in the 4-200keV range. Each one of the 80 x 80 pixels provides a full energy spectrum with an average energy resolution of 800eV FWHM at 60keV. It is a self-contained module that only requires a mains power supply and connection to a PC or Laptop. It can be supplied with a user friendly GUI to operate the detector and provide calibrated spectra per pixel or industry standard Gig-E- Vision APIs for users to integrate into their own systems.

http://quantumdetectors.com/hexitec/

Large Area HEXITEC

- 3-side-buttable module design.
- 2014: 10cm x 10cm system.
- 2017: 2nd system commissioned.
- 2018: 2 × 2 USB 3.0 system.

Science Case Studies

Understanding Alloys

<u>112 + B16 Beamlines</u>

T. Connolly, I. Dolbnya, K. Sawhney

Technology Dept.

M. Veale, M. Wilson, P. Seller

Oxford University

E. Liotti, A. Lui, A. Malandain, P. Grant

Results Published:

E. Liotti et al

Nature Scientific Reports 5 (2015)

doi:10.1038/srep15988

Traditional Imaging

Traditional Imaging

Al:Cu Alloy

Transmission Image

HEXITEC XRF Imaging

- > HEXITEC @ 90° to sample.
- ➤ 100µm pinhole used for imaging.
- Spectroscopy allows individual elements to be identified.

Dynamic XRF Imaging

HIGH ENERGY X-RAY IMAGING TECHNOLOGY

Where Next???

HIGH ENERGY X-RAY IMAGING TECHNOLOGY

HEXITEC Developments

- Going faster!
- April 2018: new chip design.
- Aiming for × 10 increase in rate.
- $>1 \times 10^5 \text{ ph s}^{-1} \text{ mm}^{-2}$

Relatively easy to implement...

Thank You For Listening!