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Motivation: evolution of X-ray detection systems to provide the high-rate 
performances further challenged by ongoing synchrotron upgrades or future 
sources (a factor 10-100 to beam-on-sample fluxes increase expected) 

High-throughput and high-resolution EDS systems 

This talk will focus on the limits assessable with analog integrated 
electronics (preamplifier+analog signal processing). 
The talk will not be a review but a (personal) overview of the main 
parameters to be optimized and their limits. 

high count rate capability 
(>1Mcounts/s/ch) 
o small processing time 
o pile-up management and minimum 

dead time (max. OCR vs. ICR) 

good energy resolution 
o optimum energy resolution 

close to Fano limit  
    (∼122eV @6keV in Silicon) 
o good low-energy response 

trade-off strategies:  
o processing time 
o processing type (analog/digital) 
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The electronics FE and processing chain for EDS detectors 

+ 

- 
+ 

- Q 

detector 

CSA 

signal  
processing 

÷Q 
back end 
(MCA, …) 

• Silicon Drift Detectors (SDDs) 
• other Si-based detectors (PIN, pixel, CCDs,…) 
• high-Z materials (CdTe, CZT, Ge,..) 

• discrete components 
• on-chip JFET based 
• CMOS 

• analog processing 
• digital processing 
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Main limitations in the high-throughput and  
high-resolution trade-off 
 
 
• Electronics noise 

 
• Ballistic deficit 

 
• Pile-up 

 
• Count-rate capability (max OCR, OCR vs. ICR) 
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Electronics noise 
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Electronics noise contributions 
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ωω1

SV
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input FET noise 
contributions: 

CT = CD + CS + CG + CF 
CD : detector cap. 
CS : parasitic cap. (bonding, pads,...) 

CG : gate cap. of input FET 
CF : feedback cap. 
gm : transconductance of input FET 
Af : 1/f noise coeff. of input FET 
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Front-end for Silicon Drift Detectors 

• JFET integrated on the SDD 

• lowest total anode capacitance 
• easier interconnection in SDD arrays 
• limited JFET performances (gm, 1/f) 
• sophisticated SDD+JFET technology 

• external FET (JFET, MOSFET) 

• better FET performances 
• standard SDD technology 
• larger total anode capacitance 
• interconnection issues in SDD arrays 
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ENC2 = A14KTα 
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Electronics noise with 
ext. MOSFET 

PMOSFET preamplifiers: 
•… 
• G.Bertuccio, S.Caccia, NIMA  
579, p. 243, 2007. 
• G.De Geronimo, et al., IEEE TNS, 
vol.57,3, p.1653, 2010. 
• L.Bombelli, et al., IEEE NSS Conf. 
Rec., 2010. 

• alternative solution to improve 
series noise contribution, which 
dominates in high-rate 
operations 

•  CT
2/gm factor benefits of large 

gm of MOSFET, despite increase 
of CT due to external connection 

• 1/f noise contribution (Af) should  
be minimized for optimum 
resolution 
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Electronics noise minimization (for high rates operations) 
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CT
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count rate capability 

(cooling, 
short τsh) 

series white noise: 

ENCS
2 ÷ 

gm (ID) ÷ 
ID

 

nVT 
÷ ID

 

(CD + CS + CG)2 

ID
 

• minimize CS  
• minimize CG (but → mod. inv. VGS ∼ Vth) 
• (rather indep. from Lmin, but W,L small 

for CG) 
• increase ID (vs. power, biasing 

limitations, …) 

(weak inversion: 
VGS << Vth) 

1/f noise: 

ENC1/f
2 ÷ Af(CD + CS + CG)2 

• minimize CS  
• Af depends on nMOS/pMOS, W,L 

(CG), ID, technology…. 
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1/f noise vs. technologies PMOS vs. NMOS 

(G.Bertuccio, S.Caccia, TNS, 2009)  

AMS CMOS 0.35um 

1/f noise vs. scaling 
• less difference between 

NMOS and PMOS 
• PMOS: 1/f appears to 

increase with scaling 
(many measurements and papers on 
noise vs scaling...) 
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CMOS Preamplifier ‘CUBE’ 
• the whole preamplifier is connected close to the SDD (and not only the FET): 
•  the remaining part of the electronics (the ASIC of analog processing or a DPP)  
      can be placed relatively far from the detector (even 10-100 cm) 
• the high transconductance of the input MOS compensates  
      the larger capacitance introduced in the connection SDD-FET 

(L. Bombelli, et al., NSS Conf. Rec., 2011) 

ENC2 ÷  CT
2 

gm 
1 

τ 

SDD 

CUBE 

(R.Quaglia, et al., 
TNS, 2015) 

Monolithic 4 
channels CUBE 
preamplifier 
for ARDESIA 
module 

4x25mm2 SDD array 

4ch CUBE  
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32 ns 

64 ns 

96 ns 

(12.5e- rms) 
96ns 

160ns 

SDD detector 
T=-50°C 
DANTE DPP (XGLab) 

data courtesy of 
L.Bombelli (XGLab) 

Energy resolution with CUBE 
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• Diffusion of the charge packet while drifting 
towards the anode 

• The width of the current pulse at the anode 
depends on the generation point 

Ballistic deficit (1) 

FWHM 

square  
SDD 

circular  
SDD (data from 

simulations) 

drift time 
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Ballistic deficit (2) 

• With detector pulse width comparable to the shaping 
time, the filter peak output decreases 

• The energy spectrum broadens and the peaks move 
towards lower energies 

detector 

detector 

shaper 

shaper 

BD 

example of ENC-
equivalent BD in SDDs 

→ be aware for minimum pulse duration (measurements) 
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CSA discussion: performances 

• Improvement of CMOS CSAs noise at short processing time 
still possible (although maybe not terrific..) 

• still room for minimization of parasitic capacitances (bonding, 
pads, stray…). Bump-bonded SDD arrays+ASIC an option to be 
explored? Other specific interconnection development? 

• Further shortening shaping time @ constant noise: 

ENC2  CT
2 

gm 
1 

τ 
= 

const 
⇒ 

τ ÷ CT
2 

τ ÷ 1/gm (but remember gm and CG dependency) 

Questions to be addressed: 
• further reduction of CT ? 
• further increase of gm?  
• then overall processing time reduction limited by ballistic deficit?  
    → detector segmentation with smaller pixels? 
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CSA discussion: design methods 

• Several models (including simulator ones) exist 
to attempt optimization of MOSFET design and 
operation point. Differences in technologies 
play a role to minimize series and 1/f noise. 

• Despite availability of design rules and models, 
design of an ultra low-noise CSA for a specific 
X-ray spectroscopy detector remains a multi-
parameter, recursive exercise of ‘tailoring’ a 
circuit to ‘fit’ at the best a detector:  
 

detector 

designer 
CSA 
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Analog Pulse Processing ASICs for High Count Rate X-ray 
spectroscopy applications 

PROS: 
• Suitable for large number of channels  
• Lower cost per channel 
• Lower power consumption 
• Suitable for high-integrated detection systems 

CONS: 
• Lower throughput (vs. digital pulse processors) 
• Less flexible in filter implementation (shape/duration) and configurability 
• Possible higher sensitivity to ballistic deficit at very short processing times 
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Filter comparisons for high-count rate operations (1) 

(1) Pile-up 
𝜶𝜶𝒎𝒎𝒎𝒎𝒎𝒎 : minimum 
distance so that the 
amplitude of the 
second pulse is 1% 
higher of its real value, 
normalized to the filter 
pulse-width. 

𝐹𝐹𝐹𝐹𝐹𝐹1 = 1 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚�  

(3) Ballistic Deficit 
𝜷𝜷𝒎𝒎𝒎𝒎𝒎𝒎 : maximum width 
of the input pulse so that 
the output is 1% smaller 
than its real value, 
normalized to the filter 
pulse-width. 

𝐹𝐹𝐹𝐹𝐹𝐹3 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 

       (2) Noise 
series noise coefficient 

𝐹𝐹𝐹𝐹𝐹𝐹2 = 1
𝐴𝐴1�  

𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠2 =
4𝑘𝑘𝑘𝑘𝛾𝛾
𝑔𝑔𝑚𝑚

𝐸𝐸𝑝𝑝2
1
𝜏𝜏
𝐴𝐴1 

Constant Parameter Filters 

Switched Parameter Filters 

Trapezoidal Filters 

filters are compared (for the 
same width @1% of peak 
amplitude) with respect to three 
figures of merit: 

βmax 
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Pile-up Series Noise Ballistic Deficit 
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Filter comparisons for high-count rate operations (2) 
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Shaper pulse shortening (vs. chosen technology) 

200ns 
400ns 1000ns 

(measurements from TERA ASIC) (simulations) 

(200ns width) 

Optimization of electronics 
noise vs. pulse duration: 
• SDD+CUBE 
• 0.35µm CMOS technology 
• poles tuning vs. bandwidth 

limitations of the chosen 
technology  
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Piled-up Pulses 

• Pile-up Rejection Algorithm to remove 
corrupted pulses 

• Impact on Output Count Rate limitation 

Pile up rejector (PUR) 
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Output Count Rate Limitation: comparison of 2 PUR Strategies 

First pulse acceptable None acceptable 

(2) 𝒕𝒕𝒅𝒅𝒅𝒅𝒅𝒅𝒎𝒎𝒅𝒅 based algorithm (Bellotti, NSS, 2017) 

 

Both pulses acceptable 

τdelay Yes Yes Yes No No No 

(1) 𝒕𝒕𝒓𝒓𝒎𝒎𝒓𝒓𝒅𝒅 and Low-Threshold based algorithm (De Geronimo, TNS, 2010) 

τrise 

Yes Yes Yes No No No 
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OCR limitation due to ADC sampling: → derandomization 

Finite Sampling Frequency • Randomly distributed 
events are sampled with 
constant sampling 
frequency 

• Some events are not 
sampled, some samples are 
wasted 

• Different derandomization 
techniques possible (e.g. 
P.O'Connor, et al., IEEE 
TNS, 2003) 
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Derandomization by an Analog Memory 

 
Shaper 

 

PKS & 
PUR 

 

MUX & 
ADC 

𝑡𝑡𝑑𝑑𝑠𝑠𝑚𝑚𝑑𝑑−𝑡𝑡𝑚𝑚𝑚𝑚𝑠𝑠 ≈ 100𝑛𝑛𝑛𝑛 𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑓𝑓𝑠𝑠

= 500𝑛𝑛𝑛𝑛 

Memory cells derandomize the peak 
acquisition of pulses, allowing higher 
channel throughput. 

1 2 3 4 

1 2 3 4 

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 

Measurements 

(TERA ASIC, Polimi) 
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Figures of merit: 
 
Throughput: ratio 
between Output Count 
Rate (OCR) and Input 
Count Rate (ICR) 
 
Efficiency (i.e. quality):  
ratio between Good 
Pulses (amplitude error 
<1%) and Accepted Pulses 

Comparison of PUR algorithms (with derandomization) 

ADC sampling 
frequency 

‘rise’ PUR 

‘delay’ PUR 
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• SDD+CUBE 
• analog shaping  
• 200ns pulse width 
• 155eV @6keV (11.6e- rms) 
• ‘delay’ PUR 

ADC fs (MHz) ICRmax (Mcps) OCRmax (Mcps) OCR/ICR (%) 

2 3 1,4 45 

unlimited 3 1,8 60 

ADC fs (MHz) OCR@10%DT (Mcps) OCR@20%DT (Mcps) 

2 0,45 0,76 

5 0,67 1,14 

unlimited 0,72 1,18 

(simulations for TERA design, 
TERA: Throughput Enhanced 
Readout Asic, NSS 2017) 
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Analog ASICs for X-ray spectroscopy: discussion 
• Analog ASICs can provide good energy resolution and 0.5-1Mcps/ch count 

rate, although inferior to throughput capability of state-of-the-art 
digital processors 

• Ultimate throughput takes into account minimum pulse duration for noise 
performances, ballistic deficit limitations and pile-rejection. 

• Potential use still in highly integrated detector systems (with also direct 
digital output), e.g. from several tens to hundreds of channels         
(e.g. 100 channels detector @1Mcps/ch. → 100Mcps total throughput)         
and in systems with power, space and costs limitations (e.g. in some not-
synchrotron applications…).  

 • Bump-bonded SDD-arrays based 
X-ray spectroscopy detectors may 
benefit of integration of full 
analog electronics chain 
(preamplifier+filter+ADC) in a 
single ASIC. 
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thank you for your attention! 
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