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“ourue

“Internal” structure of materials — macroscopic characteristics: importance
of experimental physics to understand fundamental properties

The dilemma of x-ray optics

2  X-rays in structural analysis: diffraction as a sensing parameter for inter-
atomic distances

3 Introduction to diffraction and reciprocal space
4  Limits of reciprocal space

5 Getting the most out of real and reciprocal space,
How can we get the holy grail ?
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STRUCTURE AND PROPERTIES:

HOW CAN WE KNOW AND WHAT DO WE KNOW?

glectrically insulating
We know.. y

Glass is brittle,
(->experiment)
Shape cannot be
changed easily

Metals are much less
brittle can be formed/
deformed,

Mechanical properties Optical properties Electrical properties
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. STRUCUTRE FUNCTION RELATIONSHIP

RAVENOLY| |

\Graphit] §

~ Novoselov & Geim Nobel Price
~ 2010:

~ Using scotch tape to lift of one

a atomic layer of Graphene,

With outstanding mechanical

and electrical

2010: single layers of
MoS, turn out to have
outstanding electronic
properties.
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. ATOMIC STRUCTURE STUDIED WITH X-RAYS

Atomic distances typically 0.1 nm (1 A) X-ray wavelength (typical)
A=0.01...0.1 nm

Light A~500nm

Resolution Ax of a light microscope:
Ax = 1.22*A\/2NA~0.6*A/(n*sin a)

High resolution means small wavelengths and large apertures (large collection angles)
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. MAGNIFICATION AND RESOLUTION

Be careful with “1000-times magnification” Microscope S

Bigger lens Very big lens
v .
2 i B

Magnification : geometrical optics (no reasonable limits, everything is allowed)
Resolution (= Ax): real information: limited (at least) by quantum mechanics

= =
T
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. X-RAY OPTICS: THE DILEMMA OF REFRACTION

Interaction of electromagnetic waves (light!) and matter (~electron clouds)
The refractive index is expressed as n=1- d+if=+/EU = \E = \/50(1+ X)
X—=polarizability

The polarizability x describes the polarization P as a function of a field E:
P~XE; in the mechanical equivalent, 1/x is similar to a spring constant

P.8(t) + Bs(t) = p,E(t)

We replace s(t) by the
Polarization P(t)=p.s
- : driving force _ o
Inertia Spring constant Damping factor (friction):
| we ignore the origin
Driven oscillator equivalent to simple @ J gin)
mechanical model |

P(t) + wiP(t) + gP(t) = A E(t)

m
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| SOLUTION OF “EQUATION OF MOTION”

With P~ B(t) + wZP(t) + gP(t) = g E(t)

What else can we interpret from the mechanical equivalent ?

Amplitude Resonance
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f,= 0.15915494327376 Hz Q= 3.3333333332333
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. REFRACTIVE X-RAY OPTICS

Lens surfaces must be paraboloids of rotation

single lens parameters for Be lenses:

P R =50 to 1500um

2R, =0.45 to 2.5mm

. d below 30um

|

Resolution Ax = 1.22*A/2NA~0.6*A/(n*sin o)

parabolic profile: no spherical aberration
focusing 1n full plane

=> excellent imaging optics
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. DIFFRACTION AND RECIPROCAL SPACE

Plane wave approach

A~ v
At the observation point we record Fourier Transform

N
F=<| 3 A€ nes o |
j=1

We admit that only the time averaged Intensity can be measured and that the point
scatterers can be described as <N 15
p(r) = 2jo1 4j0 (r5)
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. DIFFRACTION AND RECIPROCAL SPACE

Young’s experiment A
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DIFFRACTION FROM A PERIODIC GRATING

Angular distance of the
peaks<->determines
distances of the slits
(grating parameter)

The width of the peaks
(FWHM) depends on the
number p of illuminated
slits

FWHM~1/p

The envelope of the
peaks determines the
width A of one silit.
FWHM~1/A

The European Synchrotron | ESRF



STRUCTURE RESOLUTION IN RECIPROCAL SPACE

“Unit cell” (smallest repetitive building | o0
block) egree]

“Bragg-peaks” corresponding to
Envelope-> different net planes)

Information about the
atomic arrangement
inside the unit cell.
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. COMPLEX MOLECULE: INSULIN

ESRF
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. DIFFRACTION AND RECIPROCAL SPACE

Plane wave approach

Aei(—ki-r+wt)

At the jc\)]bservation point we record Fourier Transform
F=<| 3 A€ nes o |
J=1

We admit that only the time averaged Intensity can be measured and that the point

scatterers can be described as =N i
p (I‘) — Zj:1 Ajo (rj)
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. FOURIER TRANSFORM: USEFUL RELATIONS

Fourier Transform

N ' . r->Q
I =<| ZAjez'riem 2>, = e‘ .dr)|?
=1 '

1. Linearity: The FT of p(7) = f(7) + g (F) 18

FTf(F)+g (M) =FT[f (7)) + FT[g(r)]

2. Convolution: 2 (7) = ]f (E) g (F— E) dé

FTf(r)xg(r)] = FTf ()] e FT g (7))

FT “ converts” a convolution in a product and vice versa
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. WE CAN BUILT A SMALL CRYSTAL

Infinite periodic
Lattice

Real
space

Reciprocal *
space

9
<

Big Crystals-sharp peaks, small crystals broad peaks. Peak intensities depend on the
structure factor. &
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. SUMMARY ON DIFFRACTION AND RECIPROCAL SPACE

Miller indices “naming of Bragg peaks”: “(hkl)-peak” means that the considered
netplanes intercept the unit cell axes at positions a/h, b/k, c/l or x/h, y/k, z/I.

£ (1,000

¥ (0,01 » 0,10
= o11m (2,0 =o1amn

Higher indices ->closer net-plane spacings -> higher Q-values.
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| USEFUL RELATIONS IN (RECIPROCAL) Q -SPACE:

Braggs law: sin8=4/2d

_4nsnd

with k= 2—”
1 A

Q

1 SnCMin,

Peak width (20C] R,=3.65%, R,=4.86% 1 =173

AQ
2 >le
= {220 (311} )
:fg" (100) (110) ! 1 i Useful relations:
! 2l @21) (310) _ 271
‘ﬁJ——H-——JL-—huA—J ]_)Lattice Spacing: dhk| -
¢ i 11 F OVl Qg
I [ —f ——— . —— — —
_2n

2)Particle size: °~ 10
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. SIZE BROADENING AND STRAIN BROADENING

Strain may lead to lattice parameter changes or gradients within one crystal.

Assuming a d-spacing change 4d:

Q_4ﬂ§n9_§£ AQ _ 2nm
A d Ad d*
D d
Strain broadening AQ(Ad) = - Ad 27 — _EQ itseeFI)fGn sonQ
d d d
271 No Q -
Particle size (D) broadening: AQ(D) = E dependence

(100) (200) (300) (100) (200) (300)

' b\rpadening

adening
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. DETERMINATION OF LATTICE PARAMETERS

0= 4nsin @ _ 271 Resolution only limited by well-definition of the
y d wavelength A and beam divergence.

Typical absolute resolution of 10-4-10-° possible without too much effort

Simple structure resolution may not require that. But in order to separate
different phases or in order to measure small perturbations in perfect
crystals (strain) this is important
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. LIMITS OF RECIPROCAL SPACE

Most of diffraction experiments use “big and homogeneous” samples, like
Homogeneous ensembles of nanostructures, chemical solutions or 2D “infinite”
structures as surfaces, thin films, ...

(d)

S W

v L] L]
20 40 60 80 100
20(°) =
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| HETEROGENEOUS STRUCTURES (DEVICES)

photovoltaic devices

Presence of multiple materials on
different lengths scales:
new strategy required.

Routing in
CMOS

In many intersting systems,
CMOS Substrate heterogeneity happens to be on the
“mesoscale” (not atomic scale).

CMOS Device Layer
=+ P24°Beams of 100 nm can be produced by

P - == — ; X-ray optics
i

MEMS Substrate

Mli
ohnection
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| DIFFRACTION (AND) IMAGING TECHNIQUES

Radiography vs. Diffraction
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Imaging: full field technique

with spatial resolution ~sub Diffraction : spatial resolution
mm (traditional sources) limited in any case and traded in for
angular resolution
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. DIFFRACTION AND SCATTERING: ADVANTAGES

Objects can be far away (leaves a lot of space
around the sample)

Angular resolution obtained by diffraction
leads to spatial information below A ->
“Interferometric” technique(~0.0001 nm for
Bragg diffraction in crystals)

Limits: requires spatially homogeneous samples

Dantina in A

Position 1: interatomic distance a

In many interesting systems,

Position 2: interatomic distance b heterogeneity happens to be on the

CMOS Devce Layer “mesoscale” (not atomic scale).
Padin - -‘v ; .. Pad out
. Combining small x-ray beams with

diffraction

MEMS Substrate

b
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. DIFFRACTION IMAGING: SCANNING PROBE

Use of focused beam/ scanning

technique. > Detector
()

Resolution limited by beam spot Diffracted signal
Sub 100 nm are possible

£
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. STRUCTURED THIN FILM: TYPICAL FOR A DEVICE

0 Si, sGe,, layer grown on a Si (001) substrate patterned by focused ion beam (FIB) to
draw the ESRF logo.

109 | c;utside t;we légo |
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. STRAIN AND ORIENTATION

{001}

Relaxed Film Strained Film

- Determine the degree of strain:

- Fully strained: the lattice parameters of the film
are strained to fit to the substrate

- Tilts appears as perpendicular shifts

o The Bragg peak position in reciprocal space is essential for retrieving all mformatlon
related to strain and/or tilts in the structure

The European Synchrotron | ESRF
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Full treatment allows to image lattice tilts and strain
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S  Relative strain levels of Aa/a 10-® can trace a landscape
3D Reciprocal (= we can “see” a AT of a few K potentially in buried
Map in each pixel ~ systems working devices)

Spatial resolution:100 nm
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. DIFFRACTION IMAGING: CROSS HATCHES IN GRADED BUFFER S

Light interference microscopy Scanning x-ray diffraction

microscopy: Tilt maps
__ung _

L
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. DIFFRACTION IMAGING: FULL FIELD

Full field technique Detector

Resolution limited by
Detector pixel size and detector distance
and numerical aperture of the optics

Sub 100 nm possible

Imaging optics

Diffracted signal

Real potential needs long detector arms

2
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. SETUP

Detector

CESRF>

100 cm
>
A
Polymer CRLs N
x
_ 8 cm
Slits
_ Focusing
Incoming Monochromator
Sample _ | -
~9m

J. Hilhorst

~34 m

aeea
s s
e
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Intensity (10° counts)

DIFFRACTION IMAGING

——Logo Rocking
Curve
1
0.1
0.01 - /
1E-3 -

4.130 4135 4140 4.145

Incident angle (°)
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. FROM FULL FIELD TO COHERENT DIFFRACTION IMAGING (CD 1)

Full field technique

Resolution ultimately limited
by numerical aperture of the
Imaging optics

Sub 100 nm within reach

B
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. COHERENT DIFFRACTION IMAGING (CDl)

Coherent Diffraction Imaging:

Theory of optics is very well known. Detector

-> Measure all emitted rays from the ‘ What we can do
sample and replace the lens by a

computer to calculate the image ,

The physics of resolution remains the same

1.22* A
2* n*sing 20

Ax=

Instead of the lens we need a detector
with a large opening angle.

We need perfect detectors: A noisy detector is like a sandblasted lens.
And we need single photon detection at near 100% efficiency
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. COHERENT DIFFRACTION IMAGING (CDI)

Another Problem : Waves have amplitudes and phases: they interfere to forr
image; :

Refraction (as in a real lens) preserves the phase information, crucial for the image ™
Detection measures only the intensity (number of photons) and not their phase

From a quantum mechanical point of view, refraction (preserves Ap) by a lens

cannot be replaced by detection (destroys Ap): Equivalence between Abbé and
Heisenberg.

Detector

AAA

The loss of phase information cannot be recovered by a computer.
We have thus to know the phase beforehand.

The sample has to be illuminated with photons that are all in phase with each other
This is the definition of a coherent beam

felv) TTIC CUrupedri Jyrnciirowuorn | LuJyisg



. PHASE OF PHOTONS AND COHERENT BEAMS

Marathon:

photons=runners

Phase depends on the exact departure time of

the runners _
- \We have to select one single

5 {* | phase. The rest of the

runners cannot be used for

B . the experiment.

We select the “coherent fraction” (Runners that all have roughly the same
departure time).
ESRF coherent fraction: <1%

Flux available for “normal” light imaging and coherent diffraction x-ray imaging:
5 Watt LED: 10*° photons/second (incoherent but with optics we can use them all)

ESRF coherent flux: 10 photons/second (@ 8keV ) -> 10*° photons in 1 year

X-ray tube coh. flux: few photons/second,10° photons in 1010 years (the age of this
world)
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. COHERENT DIFFRACTION TECHNIQUES

Use of focused beam/ scanning

technique. < ) Detector

Resolution below beam spot size
possible by reconstruction of Diffracted signal
scattering pattern

limits imposed by coherent flux vs.
stability of the sample and sample/
beam stability in general and
detector surface (numerical aperture)

Resolution below 10 nm possible

et
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