

WHY DO WE USE NEUTRONS?

we use neutrons as probes to study matter at the atomic / molecular level

neutrons tell us about the positions and motions of atoms/magnetic moments in condensed matter:

- · neutrons interact with nuclei and magnetic moments
- · the two interactions have similar 'strengths'
- · neutrons are penetrating: bulk materials can be studied

sample can be placed in a special environment

The European Synchrotron | ESRF

· interactions with matter are gentle

scattering data are easy to interpret

• although neutron sources are not as efficient as X-ray sources

Page 16 August 2016 I Christian Vettier ESRF-Grenoble & ESS-Lund

NEUTRONS: INTRODUCTION

A bit of history:

W. Bothe & H. Decker -1930

discovered very penetrating radiation emitted when $\boldsymbol{\alpha}$ particles hit light elements

I. Curie & F. Juliot -1932

observed creation of p^+ in paraffin sheets & thought new radiation was γ -rays

NEUTRONS: NEUTRON PROPERTIES								
Conversion chart								
	Energy (eV)							
	Velocity (m/sec)							
	Time of flight (µsec/m)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wavelength (Å)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Neutron wave numbers (Å ⁻¹)							
	Optical wave numbers (cm ⁻¹)							
	Temperature (°K)							
	Frequency (10 ¹² rad/s)							
	Heat (kcal/mole)							
P. A. Egelstaff ed Thermal Neutron Scattering Academic Press 1965								
Page 26 August 2016 I Christian Vettier ESRF-Grenoble & ESS-Lund The European	Synchrotron ESRF							

HOW NEUTRONS INTERACT WITH MATTER – NUCLEAR SCATTERING								
orders of magnitude:	Nuclide	Combined spin	b/fm	Nuclide	Combined spin	b/fm		
depend on isotope, nuclear	1H	1	10.85	²³ Na	2	6.3		
eigenstate, and nuclear spin orientation relative to neutron	^{2}H	0 3 2	-47.50 9.53	⁵⁹ Co	1 4	-0.9 -2.78		
spin		$\frac{1}{2}$	0.98		3	9.91		
atom at \mathbf{R}_{i} incident wave: $e^{i\mathbf{k}_{i}}$ cross section	${}^{\mathbf{R}_i}$ sc Ψ_{scatt} ;	attered wav = $\sum_{i} e^{ik}$	$\mathbf{r} = \mathbf{at} \mathbf{r}$:	$\frac{e^{i\mathbf{k}_{i}}}{ \mathbf{r}-\mathbf{R}_{i} }$	$\left[-b_{i} \frac{e^{ik}}{ r } \right]$	$\frac{\mathbf{f}(\mathbf{r} - \mathbf{R}_{i})}{-\mathbf{R}_{i}}$		
$\left \frac{d\sigma}{d\Omega} = \frac{vdS \Psi_{\text{scatt}} ^2}{vd\Omega} = \frac{dS}{d\Omega} \left e^{i\mathbf{k}_f \cdot \mathbf{r}} \sum_j \mathbf{b}_j \left[\frac{e^{i(\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{R}_j}}{ \mathbf{r} - \mathbf{R}_j } \right]^2 = \sum_{i,j} \mathbf{b}_i^* \mathbf{b}_j e^{-i(\mathbf{k}_i - \mathbf{k}_f) \cdot (\mathbf{R}_i - \mathbf{R}_j)} d\sigma$								
wavevector transfer $m{K}$ is define beware! X-ray boys use differe	ed by K nt sign co	$\mathbf{f} = \mathbf{k}_i - \mathbf{k}_f$ nvention!	$\frac{d\sigma}{d\Omega}$	$=\sum_{i,j}b$ Fo	$\mathbf{b}_i \mathbf{b}_j \mathbf{e}^{-\mathbf{k}_i \mathbf{k}_j - \mathbf{k}_j}$	orm		
Page 34 August 2016 Christian Vettier ESRF-Grenoble & ESS	-Lund				The European Synchro	tron ESRF		

same f	or X-ra					most neutron scattering lengths are positive								
	01 / 101	(same for X-rays)												
								$\forall \uparrow \bullet$						
phase changes by after scattering							e a hva	Irogen						
no change in phase at scattering point														
ZSymbA	p or T _{1/2}	Ι	b _c	b+	b.	c	σcoh	σine	σscatt	σabs				
0-N-1	10.3 MIN	1/2	-37.0(6)	0	-37.0(6)		43.01(2)		43.01(2)	0				
1-H			-3.7409(11)				1.7568(10)	80.26(6)	82.02(6)	0.3326(7)				
1-H-1	99.985	1/2	-3.7423(12)	10.817(5)	-47.420(14)	+/-	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)				
1-H-2	0.0149	1	6.674(6)	9.53(3)	0.975(60)		5.592(7)	2.05(3)	7.64(3)	0.000519(7				
1 11 2	12.26 Y	1/2	4.792(27)	4.18(15)	6.56(37)		2.89(3)	0.14(4)	3.03(5)	< 6.0E-6				
1-11-3			2 26(2)				1.34(2)	0	1.34(2)	0.00747(1)				
2-He			3.20(3)							5222 0/7 0				
2-He 2-He-3	0.00013	1/2	5.74(7)	4.374(70)	9.835(77)	Е	4.42(10)	1.532(20)	6.0(4)	5333.0(7.0				
2-He 2-He-3 2-He-4	0.00013 0.99987	1/2 0	5.74(7) 3.26(3)	4.374(70)	9.835(77)	E	4.42(10) 1.34(2)	1.532(20) 0	6.0(4) 1.34(2)	5333.0(7.0 0				
2-He 2-He-3 2-He-4 3-Li	0.00013 0.99987	1/2 0	3.26(3) 5.74(7) 3.26(3) -1.90(3)	4.374(70)	9.835(77)	E	4.42(10) 1.34(2) 0.454(10)	0.92(3)	6.0(4) 1.34(2) 1.37(3)	0 70.5(3)				
2-He 2-He-3 2-He-4 3-Li 3-Li-6	0.00013 0.99987 7.5	1/2 0 1	5.74(7) 3.26(3) -1.90(3) 2.0(1)	4.374(70) 0.67(14)	9.835(77)	E +/-	4.42(10) 1.34(2) 0.454(10) 0.51(5)	1.532(20) 0 0.92(3) 0.46(5)	6.0(4) 1.34(2) 1.37(3) 0.97(7)	0 70.5(3) 940.0(4.0)				

SCATTERING LENGTHS						
Numbers for neutron scattering						
typical neutron flux ~10 ⁷ n/cm ² /sec						
sample volumes in the fraction of mm ³ to cm ³ range						
counting time for 'incoherent scattering' from Vanadium (σ_{incoh} ~ 5 barns)						
sample volume 1x1x0.1 cm ³ i.e. ~ 8.7 10 ²¹ atoms						
count rate ~ 4 10^5 n/sec over 4π						
detector angular aperture ~ 1% leads to ~ 4 10^3 n/sec						
Questions about statistics:						
 experimental data are 'counts in the detector', independent events but with a fixed probability (scattering cross sections!): Poisson's like 						
 usual goal is to achieve 1% error per information unit: 						
• requires ~10,000 counts per bin						
• i.e. ~ 0.5 -10 minutes for typical elastic peak $\left(\frac{d\sigma}{d\Omega}\right)_{\alpha}$						
• i.e. at least 10 times longer for inelastic studies $\left(\frac{d^2\sigma}{d\Omega dE}\right)$ Page 42 August 2016 Christian Vettler ESRF-Grenoble & ESS-Lund The European Synchrotron ESRF						

DIFFERENTIAL SCATTERING CROSS SECTION – NUCLEAR SCATTERING even more algebra and manipulations introduce time and energy to reach thermodynamics $\delta(\mathsf{E}_i - \mathsf{E}_t + \mathsf{E}_{\lambda_i} - \mathsf{E}_{\lambda_i}) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} \exp\{i(\mathsf{E}_{\lambda_t} - \mathsf{E}_{\lambda_i})t/\hbar\} \exp(-i\omega t) dt \quad \hbar\omega = \mathsf{E}_i - \mathsf{E}_t$ $\left(\frac{d^2\sigma}{d\mathsf{E}_t d\Omega}\right)_{\lambda_t \to \lambda_t}$ $= \frac{k_t}{k_i} \sum_{j'} \mathsf{b}_j \mathsf{b}_{j'} \langle \lambda_t | \exp(-i\mathbf{K} \cdot \mathbf{R}_j) | \lambda_t \rangle \langle \lambda_t | \exp(i\mathbf{K} \cdot \mathbf{R}_j) | \lambda_t \rangle \times \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} \exp\{i(\mathsf{E}_{\lambda_t} - \mathsf{E}_{\lambda_t})t/\hbar\} \exp(-i\omega t) dt$ $\left(\frac{d^2\sigma}{d\mathsf{E}_t d\Omega}\right)_{\lambda_t \to \lambda_t} = \frac{k_t}{k_i} \frac{1}{2\pi\hbar} \sum_{j'} \mathsf{b}_j \mathsf{b}_{j'}$ $\times \int_{-\infty}^{+\infty} \langle \lambda_t | \exp(-i\mathbf{K} \cdot \mathbf{R}_j) | \lambda_t \rangle \langle \lambda_t | \exp(iHt/\hbar) \exp(i\mathbf{K} \cdot \mathbf{R}_j) \exp(-iHt/\hbar) | \lambda_t \rangle \exp(-i\omega t) dt$ where *H* is the Hamiltonian of the scattering system Introduce time-dependent operators $\mathbf{R}_j(t) = \exp(iHt/\hbar) \exp(i\mathbf{K} \cdot \mathbf{R}_j) \exp(i\mathbf{K} \cdot \mathbf{R}_j) \exp(-iHt/\hbar)$

NUCLEAR SCATTERING FROM CRYSTALLINE MATERIALS						
Coherent part	exp U	exp V				
$\sum_{\mathbf{j}j'} \left\langle \exp\left\{-\mathbf{i}\mathbf{K} \cdot \mathbf{R}_{j'}(0)\right\} \exp\left\{\mathbf{i}\mathbf{K} \cdot \mathbf{R}_{j}(t)\right\} \right\rangle = N\sum_{j} \exp\left(\mathbf{i}\mathbf{K} \cdot \mathbf{j}\right) \left\{ \exp\left\{-\mathbf{i}\mathbf{K} \cdot \mathbf{u}_{0}(0)\right\} \exp\left\{\mathbf{i}\mathbf{K} \cdot \mathbf{u}_{j}(t)\right\} \right\}$						
it can be shown (Squires) $\langle expU expV \rangle = exp \langle U expV \rangle$	$^{2} angle$ exp \langle UV $ angle$					
$\frac{d^{2}\sigma}{d\boldsymbol{\Omega}dE_{f}}\right)_{coh} = \frac{\sigma_{coh}}{4\pi} \frac{k_{f}}{k_{i}} \frac{N}{2\pi\hbar} \exp\langle U^{2} \rangle \sum_{j} \exp(i\boldsymbol{K}\cdot\mathbf{j}) \int_{-\infty}^{+\infty} \exp(i\boldsymbol{K}\cdot\mathbf{j}) \left(\int_{-\infty}^{+\infty} E_{\mathbf{k}} \cdot \mathbf{j} \right) \left(\int_{-\infty}^{+\infty} E_{\mathbf{k}} \cdot \mathbf{j} \cdot \mathbf{j} \right) \left(\int_{-\infty}^{+\infty} E_{\mathbf{k}} \cdot \mathbf{j} \cdot \mathbf{j} \right) \left(\int_{-\infty}^{+\infty} E_{\mathbf{k}} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \right) \left(\int_{-\infty}^{+\infty} E_{\mathbf{k}} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \right) \left(\int_{-\infty}^{+\infty} E_{\mathbf{k}} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \right) \left(\int_{-\infty}^{+\infty} E_{\mathbf{k}} \cdot \mathbf{j} $	$p\langle UV \rangle \exp(-\mathrm{i}\omega t)$	dt				
Debye-Waller factor $2W = -\langle U \rangle$	$\left {^2} \right\rangle = \left\langle \left\{ \mathbf{K} \cdot \mathbf{u} \right\}^2 \right\rangle$					
$\frac{d^2\sigma}{d\boldsymbol{\Omega}d\boldsymbol{E}_f}\Big _{coh} = \frac{\sigma_{coh}}{4\pi}\frac{k_f}{k_j}\frac{N}{2\pi\hbar}\exp(-2W)\sum_j\exp(i\boldsymbol{K}\cdot\boldsymbol{j})\int_{-\infty}^{+\infty}\left(1-\frac{1}{2}\frac{M}{2}\right)\frac{d^2\sigma}{d\boldsymbol{\Omega}}$	$+\langle UV \rangle + \frac{1}{2!} \langle UV \rangle^2$	+) $\exp(-i\omega t) dt$				
zero-th order: coherent elastic scattering - Bragg scattering						
1 st order: coherent one-phonon scattering						
		sile				
Page 62 August 2016 I Christian Vettier ESRF-Grenoble & ESS-Lund		The European Synchrotron ESRE				

NEUTRON POLARISATION

polarised neutron beams, up(u) and down(v) states $P = \frac{n_{+} - n_{-}}{n_{+} + n_{-}}$ previous cross-sections gives rise to 4 cross-sections $u \rightarrow u \quad v \rightarrow v \quad u \rightarrow v \quad v \rightarrow u$ coherent nuclear scattering $\begin{aligned} u \rightarrow u \\ v \rightarrow v \\ v \rightarrow v \end{aligned}$ $\overline{b} = \left\langle \frac{(l+1)b^{+} + lb^{-}}{2l+1} \right\rangle_{isotopes}$ $u \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow u \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow u \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow u \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow u \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow u \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $\begin{aligned} u \rightarrow v \\ v \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 0$ incoherent nuclear scattering $u \rightarrow v \\ v \rightarrow u \end{aligned}$ $\overline{b} = 2 \sqrt{(l+1)b^{+} + lb^{-}}_{isotopes} + \frac{1}{3} \sqrt{(b^{+} - b^{-})^{2} l(l+1)}_{isotopes}$ particular cases: unpolarised neutrons Ni: all isotopes with l=0 Vanadium: only one isotope

