ESRF	Experiment title: Time-resolved x-ray spectroscopy of iron and iron alloys in the Warm Dense Matter (WDM) regime.	Experiment number: HC-2262
Beamline:	Date of experiment:	Date of report:
ID24	from: 17/09/2015 to: 21/09/2015	27/11/2015
Shifts:	Local contact(s):	Received at ESRF:
12	Dr. MATHON Olivier	
Names and affiliations of applicants (* indicates experimentalists):		
Dr. OCCELLI Florent*, CEA, DAM, DIF, F-91297 Arpajon, France.		

Report:

1- Overview

This experiment consisted of performing preliminary tests related to our next laser driven schock experiment at the ESRF that is scheduled in May 2016. This consisted of doing "cold" measurements on our targets (that is without laser drive). Which means

- 1- Measuring the XANES & EXAFS signal quality (signal-noise ratio) that can be obtained with one x-ray bunch on Fe (5 μ m thick foil) and Fe₆₄Ni₃₆ (8 μ m thick foil) at the Fe K-edge (7.112 keV), Ni and Fe₆₄Ni₃₆ (8 μ m thick foil) at the Ni K-edge (8.333keV), Ta (3, 4 and 5 μ m thick foils) near the Ta L₃-edge (9.880keV), and Mo foils (10 μ m thick) at the Mo K-edge (20.000 keV).
- 2- Measuring the influence of the diamond windows (25, 40 and 100µm thick) we use as shock confinement media on the XANES & EXAFS signal quality (signal-noise ratio modification, bragg peaks implementation on the spectra); comparing the influence of the diamond windows provided by two different companies (Almax-EasyLab and Applied Diamond).

In addition, we needed to

- 1- Test and debug the SPEC macros specifically designed for this project.
- 2- Evaluate the time necessary to go from one energy range to another.
- 3- Test the overall beam stability at each energy range.
- 3- Evaluate the necessity of using vacuum tubes along the x-ray path.

2- Fe K-edge (7.112 keV)

2-1 Experimental conditions

Fe (ρ =7.874g/cm3) ; ideal thickness = 3.5µm ; ideal jump = ?? Fe₆₄Ni₃₆ (ρ =8.1g/cm3) ; ideal thickness = 6µm @ Fe K-edge ; ideal jump = ?? We have used 5 μ m-thick Goodfellow pure iron (ref. FE000100) and 8 μ m-thick Goodfellow Fe₆₄Ni₃₆ (ref. FE020210).

Spotsize=??µm(H)x??µm(V) ; spectral range ~??eV

We used vacuum tubes along the x-ray path.

2-2 Iron and $Fe_{64}Ni_{36}$ without confinement

Fig. 1: <u>Left</u>, 5μ m thick pure Fe foil without confinement – <u>Right</u>, 8μ m thick Fe₆₄Ni₃₆ foil without confinement.

2-3 Iron and Fe₆₄Ni₃₆ in between two 25µm-thick Applied Diamond (AD) windows

Fig. 2: <u>Left</u>, 5μ m thick pure Fe foil between two 25μ m windows – <u>Right</u>, 8μ m thick Fe₆₄Ni₃₆ foil between two 25μ m windows.

2-4 Iron and $Fe_{64}Ni_{36}$ in between two 40 μm -thick ALMAX easyLab or Applied Diamond (AD) windows

Fig. 3: <u>Top-Left</u>, 5μ m thick pure Fe foil between two 40μ m Almax windows – <u>Top-Right</u>, 8μ m thick Fe₆₄Ni₃₆ foil between two 40μ m Almax windows - <u>Bottom-Left</u>, 5μ m thick pure Fe foil between two 40μ m AD windows – <u>Bottom -Right</u>, 8μ m thick Fe₆₄Ni₃₆ foil between two 40μ m AD windows.

2-5 Iron and Fe₆₄Ni₃₆ in between two 100µm-thick Almax windows

Fig. 4: <u>Left</u>, 5μ m thick pure Fe foil between two 100 μ m windows – <u>Right</u>, 8μ m thick Fe₆₄Ni₃₆ foil between two 100 μ m windows.

3- Ni K-edge (8.333 keV)

3-1 Experimental conditions

Ni (ρ =8.908g/cm3) ; ideal thickness = ?? μ m ; ideal jump = ?? Fe₆₄Ni₃₆ (ρ =8.1g/cm3) ; ideal thickness = ?? μ m @ Ni K-edge ; ideal jump = ??

We have used 5 μ m-thick Goodfellow pure nickel (ref. NI000224) and 8 μ m-thick Goodfellow Fe₆₄Ni₃₆ (ref. FE020210).

Spotsize=8µm(H)x110µm(V); spectral range ~500eV

Time to shift from Fe K-edge to Ni K-edge : ?? hours

We used vacuum tubes along the x-ray path.

3-2 Ni and Fe₆₄Ni₃₆ without confinement

Fig. 5: <u>Left</u>, 5μ m thick pure Ni foil without confinement – <u>Right</u>, 8μ m thick Fe₆₄Ni₃₆ foil without confinement.

3-3 Fe₆₄Ni₃₆ in between two 40µm-thick Applied Diamond windows

Fig. 6: 8µm thick Fe₆₄Ni₃₆ foil between two 40µm AD windows.

3-4 Fe₆₄Ni₃₆ in between two 100µm-thick ALMAX easyLab windows

Fig. 7: <u>Left</u>, 5μ m thick pure Ni foil between two AL 100 μ m windows – <u>Right</u>, 8μ m thick Fe₆₄Ni₃₆ between two AL 100 μ m windows.

4- Ta L₃-edge (9.880 keV)

4-1 Experimental conditions

Ta (ρ =16.650g/cm3); ideal thickness = 3.5µm; ideal jump = 0.83

We have used 3, 4 and 5μ m-thick Goodfellow pure tantalum (respective refs TA000120, TA000130 and TA000140).

Spotsize=??µm(H)x??µm(V) ; spectral range ~??eV

Time to shift from Ni K-edge to Ta L₃-edge : 2 hours.

We used vacuum tubes along the x-ray path.

Fig. 8: 3µm thick Ta foil without confinement. A vacuum tube was monted before recording the 1-bunch spectrum

4-3 3µm-thick Ta in between two 25µm-thick Applied Diamond windows

Fig. 9: $3\mu m$ thick Ta foil between two AD $25\mu m$ windows.

4-4 3µm-thick Ta in between two 40µm-thick Almax or Applied Diamond windows

Fig. 10: <u>Left</u>, 3μ m thick Ta foil between two 40μ m Almax windows – <u>Right</u>, 3μ m thick Ta foil between two 40μ m Applied Diamonds windows.

4-5 3µm-thick Ta in between two 100µm-thick Almax windows

Fig. 11: 3µm thick Ta foil between two Almax 100µm windows.

4-6 4 μ m-thick Ta in between two 40 μ m-thick Almax windows ; comparison with 3 μ m-thick Ta in the same conditions.

The spectra quality of 4μ m-thick Ta is way better than that of 3μ m-thick Ta. This may be due to a poor material quality of the 3μ m-thick foil we used.

Fig. 12: <u>Left</u>, 3μ m thick Ta foil between two Almax 40μ m windows.– <u>Right</u>, 4μ m thick Ta foil between two Almax 40μ m windows. The Ta foil sold by Goodfellow as " 5μ m-thick" turns out to be 4μ m-thick

4-7 Miscellaneous: Test with or without vacuum tube ; Change of detector position @ 194cm

We have removed the vacuum tubes. By testing on a 4μ m Ta target in between two 40μ m-thick Applied Diamond windows, we see a decrease on I by a factor of 3. The XH detector capacitance is set to 5pF.

We have also moved the detector to 194 cm so as to increase the resolution. But the vacuum tube had to be put back in place.

Fig. 13: <u>Left</u>, Differences between spectra recorded with or without vacuum tube.– <u>Right</u>, Change of detector position @ 194cm

5- Mo K-edge (20.000 keV)

5-1 Experimental conditions

Mo (ρ =10.280g/cm3); ideal thickness = 16.7µm; ideal jump = 1.17

We have used 10µm-thick Goodfellow pure molybdenum (ref. MO000200)

Spotsize=??µm(H)x??µm(V) ; spectral range ~??eV

Time to shift from Ta L₃-edge to Mo K-edge : ?? hours

Here, we **didn't** use vacuum tubes along the x-ray path.

5-2 10µm-thick Mo without confinement

Fig. 14: 10µm thick Mo foil without confinement.

5-3 10µm-thick Mo in between two 25µm-thick Applied Diamond windows

Fig. 15: 10µm thick Mo foil between two AD 25µm windows.

Fig. 16: <u>Left</u>, 10 μ m thick Mo foil between two 40 μ m Almax windows – <u>Right</u>, 10 μ m thick Mo foil between two 40 μ m Applied Diamonds windows.

5-5 10µm-thick Mo in between two 100µm-thick Almax windows

Fig. 17: 10µm thick Mo foil between two Almax 100µm windows.

6- Influence of the diamond windows

6-1 Fe case

Fig. 18: Influence of the different diamond thicknesses on the Fe (<u>Top</u>) and on the Fe₆₄Ni₃₆ (<u>Bottom</u>) spectra qualities. The 10 bunches spectra (bluish curves) are offset by +1 for clarity.

6-2 Ni case

Fig. 19: Influence of the different diamond thicknesses on the Ni (<u>Top</u>) and on the $Fe_{64}Ni_{36}$ spectra qualities. The 10 bunches spectra (bluish curves) are offset by +1 for clarity.

Fig. 20: Influence of the different diamond thicknesses on the Ta spectra qualities (3μ m –thick foil). The 10 bunches spectra (bluish curves) are offset by +0.25, and the 1000 bunches spectra (greenish curves) are offset by +0.5 for clarity.

6-4 Mo case

Fig. 21: Influence of the different diamond thicknesses on the Mo spectra qualities. The 10 bunches spectra (bluish curves) are offset by +0.25, and the 1000 bunches spectra (greenish curves) are offset by +0.5 for clarity.

7- Comparison between the diamond windows provided by the two different suppliers

7-1 Fe case

Fig. 22: Influence of the Almax and of the Applied Diamond 40μ m-thick windows on the Fe (<u>Top</u>) and on the Fe₆₄Ni₃₆ (<u>Bottom</u>) spectra qualities. The 10 bunches spectra (bluish curves) are offset by +0.5 for clarity.

7-2 Ni case

This comparison hasn't been performed at the Ni K-edge.

7-3 Ta case

Fig. 23: Influence of the Almax and of the Applied Diamond 40μ m-thick windows on the Ta spectra qualities. The 10 bunches spectra (bluish curves) are offset by +0.25, and the 1000 bunches spectra (greenish curves) are offset by +0.5 for clarity.

Fig. 24: Influence of the Almax and of the Applied Diamond 40μ m-thick windows on the Mo spectra qualities. The 10 bunches spectra (bluish curves) are offset by +0.5 for clarity.

8- Conclusion

- 1- We noticed only the macro "rmspectrum" provides a synchronization scheme between the Machine and the XH detector.
- 2- This study proved it feasible to perform one-shot experiments at the four energy ranges we set up the beamline. In each case, data of good enough quality to extract physical information were recorded. Though, data recordings from one bunch are noisy while those from 10 bunches are perfect. If needed (e.g. if a fine effect needs to be studied), we will have to reproduce 10 times the same experimental conditions in order to be able to average 10 identical spectra.
- 3- The diamond windows (even the thickest ones) proved altering very little the spectra. Though an effect is seen, the data usability is not at stake. No bragg peaks from the diamond window were seen on any spectrum at any energy range. There was little noticeable differences between the data collected on samples emmbedded in 40µm-thick Applied Diamond windows and in 40µm-thick Almax-EasyLab windows : the spectra are slightly better with Almax windows at the Fe K-edge, and slightly better wit Applied Diamond windows at the other energy ranges. But it may also be due to the ESRF machine conditions, which we didn't keep record of. But overall, the windows provided by the two suppliers can be said of equivalent quality. Though the Applied Diamond windows are less expensive than the Almax windows (75\$ vs 100€ for 40µm-thick items), we (at the CEA) decided to purchase Almax windows to pursue this project because of the shorter delivery time, and because we know the Almax windows work fine in the real shock conditions.