

Outline of this talk

- Introduction
 - SOLEIL / PSICHE / Me
- Imaging and tomography
 - How the experiment works
- · Analysis of 3D image data
 - Extract quantitative results
- · Strain and deformation measurement
 - Digital image and volume correlation
- · Other ideas and possibilities
 - Combining tomography and diffraction
 - Big data
- Conclusions

SOLFIL

10/11/2015

Outline	
Introduction	
– SOLEIL / PSICHE / Me	
 Imaging and tomography 	
 How the experiment works 	
 Analysis of 3D image data 	
 Extract quantitative results 	
 Strain and deformation measurement 	
 Digital image and volume correlation 	
 Other ideas and possibilities 	
 Combining tomography and diffraction 	
– Big data	
Conclusions	
SPALEII	

DIC/DVC

- Drawn from Michel Bornert's lecture

 Mistakes and misunderstandings added by me
- What is involved, and how does it work?
 - simple example
- What does this mean?
 - characteristics of the measurement
 - advantages
 - requirements / limitations
- · Some more details on the method
- Examples are mostly 2D (or 1D) but everything is applicable to 3D tomography data

<section-header>

Outline	
٠	Introduction
	– SOLEIL / PSICHE / Me
٠	Imaging and tomography
	 How the experiment works
٠	Analysis of 3D image data
	 Extract quantitative results
٠	Strain and deformation measurement
	 Digital image and volume correlation
•	Other ideas and possibilities
	 Combining tomography and diffraction
	 Big data
•	Conclusions
SON	E I L

Big data and correlative tomography

- Tomography is big data
 2k³, 32bit = 32GB x n time steps
- *"Big data"* is an approach to working with such large datasets
 - Automation is essential
 - Choose tools or packages that allow automation of your analysis
 - Efficient optimisation of parameters
- · Correlative tomography
 - combine multiple datasets for more information
 - timesteps, tomo+diffraction, tomo
 - +fluorescence,multiple energies,tomo+SEM...

SOLE

Outline

- Introduction
 - SOLEIL / PSICHE / Me
- Imaging and tomography
 - How the experiment works
- Analysis of 3D image data
 - Extract quantitative results
- Strain and deformation measurement
 - Digital image and volume correlation
- · Other ideas and possibilities
 - Combining tomography and diffraction
 - Big data
- Conclusions

SQLEIL

Conclusions

- Image based deformation measurement
 - strain, plasticity, flow...
 - full field results
- Applicable to all imaging techniques
 - tomography (lab / synchrotron X-rays, neutrons), radiography, optical microscopy, electron microscopy...
- Highly complementary to diffraction
 - Total strain rather than elastic strain
 - Should combine techniques

SOLEI