A Light for Science

European Synchrotron Radiation Facility

3-d Data Collection

50 µm

Dose rate =0.5 Mgy/s

ID23-1,

- Theory - Experiment

Micro-crystallography

• Thermolysin, Space Group P6₁22; B-factor=11.5 Å²

• For a crystal 1x1x1 μ m³ in dimensions partial data sets *from about 1000 crystals* would be needed to achieve a final data set resolution of d_{min} = 2.0 Å.

Case 1: One-dimension DC

Model for diffraction intensity vs. reciprocal space coordinate

Radiation-damage model

Resolution-dependent intensity decay:

$$\hat{J}(\mathbf{h}, D) = \hat{J}(\mathbf{h}, D = 0) scale(D) \exp(-B(D)h^2/2)$$

Radiation-induced non-isomorphism:

$$\sigma_a \approx e^{-\alpha Ds^2}$$

$$R_{1I} = \left\langle \left| \frac{I_{D=0}}{\langle I_{D=0} \rangle} - \frac{I_D}{\langle I_D \rangle} \right| \right\rangle \approx (1 - \sigma_a^2)^{1/2}$$

A.Popov

:	31.44
:	82.17 Angstrom^2
:	51.11 118.04 118.04 Angstrom^2
:	3% at the resolution limit
	: : : :

Wed Dec 21 15:35:5<u>6 2011</u>

Case 2: Two-dimension DC

(a) micrometre-sized crystals

IUCLJ ISSN 2052-2525 BIOLOGY MEDICINE Serial crystallography on *in vivo* grown microcrystals using synchrotron radiation

Cornelius Gati,^a‡ Gleb Bourenkov,^b‡ Marco Klinge,^c Dirk Rehders,^c Francesco Stellato,^a Dominik Oberthür,^{a,d} Oleksandr Yefanov,^a Benjamin P. Sommer,^{d,e} Stefan Mogk,^e Michael Duszenko,^e Christian Betzel,^d Thomas R. Schneider,^b* Henry N. Chapman^{a,f}* and Lars Redecke^c*

Received 7 November 2013 Accepted 16 December 2013

(b) sub-10 mu m crystals Can not be characterized

Case 2: Two-dimension DC (b) sub-10 mu m crystals Crystals Can be characterized

Data collection strategy accounting radiation damage

FAE crystals ID23-1

E=12.75Kev, I=35 mA, Aperture=0.03 mm Flux=1.5x10¹¹ Photon/sec

The 70 kDa membrane protein FtsH from Aquifex aeolicus I222, a = 137.9, b = 162.1, c = 170

 $\hat{J}(\mathbf{h}, D, \Omega) = \hat{J}(\mathbf{h}, D = 0) scale(D, \Omega) \exp(-\mathbf{h} \cdot \mathbf{B}(D, \Omega) \cdot \mathbf{h}^T / 2)$

Flux σx σy Aperture Slit sizes

Diffraction sample Modeling

$Scale(\Omega) = Scale(voxel) \times NumberVoxel(\Omega)$

$\hat{J}(\mathbf{h}, D) = \hat{J}_{o}(h) \sum_{voxel \ x, y} \sum_{x, y} I_{x, y}(beam) \times scale(voxel, D_{voxel}) \exp(-\mathbf{h} \cdot \mathbf{B}(D_{voxel}) \cdot \mathbf{h}^{T}/2)$

齿	eam_cr	ystal.da	t - /mntdire	ct/_use	rs/apop	ov/BEST4.	1/ ∎ ≑ X
<u> </u>	e <u>E</u> dit	<u>S</u> earch	<u>P</u> references	Shell	Ma <u>c</u> ro	<u>W</u> indows	<u>H</u> elp
- a. hor: ver de: lde: r !ve: beau ve: beau lu: flu:	this is izontal_ tical_s: tical_s: falt: no rizontal rtical_s m_shift rtical s am_flux x_2_doso	s a comme s in mm size 0.035 ize 0.036 o apertun l_slit 0. slit 0.16 0.01 shift re: 2.0e12 e 2.0e-5	ents)45 5 1000)00 Lative to th	e rota	tion axi	.3	
i cry: cry: cry: cry: de: de: end	stal_ven stal_ven stal_hon ga_min { scriptio	ct_max 0. ct_min 0. c 0.100 20 on of cry	170 090 ystal shape	and po:	sition-	a, c, b	<u>д</u>

First step - scaling

First step - scaling

Main Wedge

_____ Resolution limit is set by the radiation damage Resolution limit =1.61 Angstrom Transmission = 100.0% Distance = 306.2mm WEDGE PARAMETERS || INFORMATION sub-| Phi |Rot. | Exposure| N.of||Over|sWedge|Exposure|Exposure| Dose | Dose |Comple-We-|start |width | /image | ima-||-lap| width| /sWedge| total |/sWedge| total |teness daeldeareeldeareel s | ges|| |degree| s | s | MGy | MGy | % ------1 81.00 0.15 0.122 1067|| No 160.05 130.5 130.5 3.581 3.581 99.9 2 241.05 0.15 0.358 333|| No 49.95 119.3 249.9 3.274 6.855 100.0 3 291.00 0.15 0.223 567|| No 85.05 126.2 376.1 3.463 10.319 100.0 4 376.05 0.15 0.647 100 No 15.00 64.7 440.8 1.774 12.093 100.0 Phi_start - Phi_finish : 81.00 - 391.05 Total rotation range : 310.05 degree Total N.of images : 2067 Overall Completeness : 100.0% Redundancy : 12.69 R-factor (outer shell) : 10.5% (89.7%) I/Sigma (outer shell) : 30.7 (3.2) Total Exposure time : 440.8 sec (0.122 hour)

- Total Data Collection time : 449.0 sec (0.125 hour)
- CUMMARY END . . / CONT. . /D.

Main Wedge

Resolution limit is set by the radiation damage Resolution limit =1.65 Angstrom Transmission = 100.0% Distance = 315.4mm

		WEDGE PA	RAMETERS	11		INFO	RMATION			
sub-	Phi	Rot.	Exposure	N.of Over	sWedge	Exposure	Exposure	Dose	Dose	Comple-
We-	start	width	/image	ima- -lap	width	/sWedge	total	/sWedge	total	teness
dge	degree	degree	s	ges	degree	s	s	MGy	MGy	%
1	132.00	0.15	0.478	634 No	95.10	303.1	303.1	8.315	8.315	97.0
2	227.10	0.15	1.328	33 No	4.95	43.8	346.9	1.202	9.518	99.0

Phi_start - Phi_finish	: 132.00 - 232.05
Total rotation range	: 100.05 degree
Total N.of images	: 667
Overall Completeness	: 99.0%
Redundancy	: 4.13
R-factor (outer shell)	: 6.3% (48.1%)
I/Sigma (outer shell)	: 27.2 (2.9)
Total Exposure time	: 346.9 sec (0.096 hour)
Total Data Collection time	: 349.6 sec (0.097 hour)

Background vs. Crystal position

Background vs. Crystal position

X	Adxv - B	bg_study_1_000?	L.cbf											_				
									A									
				X					Ad	xv M	agni	fy						ŧ×
				0	0	0	0	0	0	1	1	1	0	0	0	0	1	1
				0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
				0	0	0	0	0	1	0	0	1	1	1	0	0	0	0
				1	0	0	1	0	1	0	0	0	0	0	1	0	0	0
	. :			0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
				0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
				0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		+	1.	0	0	2	0	0	0	0	0	1	0	1	0	0	0	0
				0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
		· · · · · ·		0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
				0	2	0	0	0	1	0	0	0	0	0	1	0	2	0
				1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
				1	0	0	2	0	0	0	0	0	0	0	0	0	0	1
				0	0	0	0	0	0	1	0	1	0	0	2	0	1	0
				0	0	1	1	0	0	1	0	1	0	0	1	0	0	0
				0	0	0	0	0	1	1	1	0	0	0	0	0	0	0

								Backgrou	nd Plot							
	- 3.0			\bigwedge												hac
1	0.5															
n t n s i t y	U.4		/			\backslash										
	0.3	/					Y		/	$\overline{\langle}$	(
	0.2															
1	0 1 of	12	1		ы		0	.2 1/ Resolut	ion**2		0	.3		0.4	4	0.439

Fri Nov 8 14:39:20 2013

image number =		1	
Relative scale	:	9.08	3
Overall B-factor	:	23.74	Angstrom^2
Resolution used	:	1.7	Angstrom
Correlation = 84.	6 %		
Rfactor = 17.7 %			

How to define a form and the position of a crystal?

crystal detection and characterization

computer programs

Journal of Applied Crystallography Automated diffraction image analysis and spot searching for high-throughput crystal screening

Received 1 September 2005 Accepted 5 December 2005 Zepu Zhang,^a Nicholas K. Sauter,^b Henry van den Bedem,^c Gyorgy Snell^d and Ashley M. Deacon^c*

LABELIT MOSFLM

Best position Grid index YGrid index ZImage file sampxsampyphiy Total integrated intensity Bravais lattice 10 mesh2d-opid291 1 0020.cbf-0.089 0.005 -0.545 1.3e+07 P3 2 All positions Grid index YGrid index ZImage file Total integrated intensityBravais lattice sampxsampyphiy mesh2d-opid291_1_0001.cbf-0.043 -0.041 -0.345 1.61e+06 mesh2d-opid291_1_0002.cbf-0.046 -0.038 -0.367 6.17e+06 1 1 mesh2d-opid291_1_0003.cbf-0.049-0.035-0.3909.35e+06 mesh2d-opid291_1_0004.cbf-0.053 -0.031 -0.413 1.08e+07 **P**3 1 mesh2d-opid291_1_0005.cbf-0.056 -0.028 -0.436 1.14e+07 1 mesh2d-opid291_1_0006.cbf-0.059 -0.025 -0.458 9e+06 1 mesh2d-opid291_1_0007.cbf-0.062-0.022-0.4816.49e+06 1 1 mesh2d-opid291 1 0008.cbf-0.065-0.019-0.5043.04e+06

50

Best position

The sample has automatically been moved to the best position.

In order to move the sample to an other position please copy/paste the commands from the right column into SPEC EXP.

Axis 1	Axis 2	lmage file	Signal 1	Signal 2	Bravais lattice	SPEC command for moving sample to position
3	4	mesh-x_1_0018.cb	f90.9	75846	P1	mv sampx 0.280; mv sampy -0.382; mv phiy 22.465

Signal 1: Criteria that uses intensities over background vs resolution. Popov 2014, to be published. Signal 2: Labelit distl spotfinder total integrated intensity.

All positions

Axis 1	Axis 2	lmage file	Signal 1	Signal 2	Bravais lattice	SPEC command for moving sample to position
3	4	mesh-x_1_0018.cbf	90.9	75846	P1	mv sampx 0.280; mv sampy -0.382; mv phiy 22.465
4	4	mesh-x_1_0019.cbf	5.2	8975	_	mv sampx 0.278; mv sampy -0.381; mv phiy 22.515
1	1	mesh-x_1_0001.cbf	0	165	_	mv sampx 0.351; mv sampy -0.415; mv phiy 22.370
2	1	mesh-x_1_0002.cbf	0	368	_	mv sampx 0.348; mv sampy -0.414; mv phiy 22.419
3	1	mesh-x_1_0003.cbf	0	87	_	mv sampx 0.346; mv sampy -0.413; mv phiy 22.469
4	1	mesh-x_1_0004.cbf	0	199	_	mv sampx 0.344; mv sampy -0.411; mv phiy 22.519
5	1	mesh-x_1_0005.cbf	0	811	_	mv sampx 0.341; mv sampy -0.410; mv phiy 22.569
1	2	mesh-x_1_0006.cbf	0	274	_	mv sampx 0.329; mv sampy -0.405; mv phiy 22.368
3	2	mesh-x_1_0008.cbf	0	365	_	mv sampx 0.324; mv sampy -0.402; mv phiy 22.468
4	2	mesh-x_1_0009.cbf	0	514	_	mv sampx 0.322; mv sampy -0.401; mv phiy 22.518
5	2	mesh-x_1_0010.cbf	0	281	_	mv sampx 0.319; mv sampy -0.400; mv phiy 22.567
1	3	mesh-x_1_0011.cbf	0	825	_	mv sampx 0.307; mv sampy -0.394; mv phiy 22.367
2	3	mesh-x_1_0012.cbf	0	690	_	mv sampx 0.305; mv sampy -0.393; mv phiy 22.417
3	3	mesh-x_1_0013.cbf	0	1251	_	mv sampx 0.302; mv sampy -0.392; mv phiy 22.467
4	3	mesh-x_1_0014.cbf	0	4402	_	mv sampx 0.300; mv sampy -0.391; mv phiy 22.516
5	3	mesh-x_1_0015.cbf	0	76	_	mv sampx 0.297; mv sampy -0.390; mv phiy 22.566
1	4	mesh-x_1_0016.cbf	0	553	_	mv sampx 0.285; mv sampy -0.384; mv phiy 22.366
2	4	mesh-x_1_0017.cbf	0	539		mv sampx 0.283; mv sampy -0.383; mv phiy 22.416
5	4	mesh-x_1_0020.cbf	0	83		mv sampx 0.276; mv sampy -0.380; mv phiy 22.565
2	2	mesh-x_1_0007.cbf	-0.005	6889	_	mv sampx 0.327; mv sampy -0.403; mv phiy 22.418

Number	Scaler	B-factor	Resolution	Correlation	R-factor	
1	7.896	310.8	5.3	12.4	74.9	
2	43.779	124.7	4.1	39	43.6	
3	74.18	53.1	3	71.2	20.4	
4	89.461	43.6	2.9	76.2	20	
5	108.249	37.1	2.9	78.1	21.9	
6	255	38.5	3.1	77.9	22.6	
7	916.497	46.1	5.3	60.5	49.7	
8	2075.394	67.8	5.3	10.7	87.6	
9	0	0	0	0	0	
10	0	0	0	0	0	
11	424.232	43.5	4.8	62.5	36.2	
12	31.177	34.8	2.4	80.5	17.4	
13	14.481	28.3	2	84	15.4	
14	8.728	31.3	1.9	81.7	17.9	
15	5.714	37.1	2	78.7	18.5	
16	5.048	38.9	2.1	77.2	20.3	
17	6.151	34	1.9	79.7	17.4	
18	11.242	29.3	1.9	83.7	15.1	
19	15.979	38.7	2.1	76.6	21.5	
20	51.573	39.3	2.9	76	22.7	
21	0	0	0	0	0	
22	203.738	49.6	3.1	71.4	27.2	
23	37.04	47.9	2.9	73.1	21.5	
24	13.783	49.1	2.4	71	24.4	
25	14.12	30.1	2.4	82.5	16.6	
26	7.71	34.2	2	79.3	19.3	
27	5.854	35.4	1.9	80	17.1	
28	5.696	37.9	2	79.1	16.9	
29	6.887	35.6	1.9	79.5	16.3	
30	9.08	23.7	1.7	84.6	17.7	
31	0	0	0	0	0	
32	0	0	0	0	0	
33	0	0	0	0	0	
34	0	0	0	0	0	
35	219.289	42.8	3.1	74.7	26.8	
36	166.848	-9.9	2.4	37.6	62.2	
37	49.944	12.6	2.4	85.5	24.5	
38	17.325	40.3	2.4	74.9	24.2	
39	11.697	49.7	2.4	70.9	24.9	
40	15.37	36.1	2.1	77.9	20.8	