Serial femtosecond crystallography of a photosynthetic reaction centre

Gergely Katona Department of Chemistry University of Gothenburg

SFX collaboration

Gothenburg	<i>R. Neutze, L. Johansson, D. Arnlund</i> , A. Sharma, E. Malmerberg C. Wickstrand, J. Sjöhamn, Weixiao Y. Wahlgren
CFEL-DESY	<i>H. Chapman,</i> J. Schulz, A. Barty, M. Liang, A. Aquila, T. White, D. Deponte, S. Stern, A. Martin, C. Caleman, K. Nass, F. Stellato, F. Wang, H. Fleckenstein, L. Gumprecht, L. Holmegaard, N. Coppola, S. Bajt, M. Barthelmess,
ASU	J. Spence, P. Fromme, U. Weierstall, B. Doak, M. Hunter, R. Kirian, X.Wang, K. Schmidt, I. Grotjohann, R. Fromme
SLAC-PULSE	M. Bogan, D. Starodub, R. Sierra, C. Hampton, D. Loh
SLAC-LCLS	S. Boutet , G. Williams, M. Seibert, J. Kryzwinski, C. Bostedt, M. Messerschmidt, J. Bozek, W. White, R. Coffee
Uppsala	J. Hajdu, Nic Timneanu, J. Andreasson, M. Seibert, F. Maia, M. Svenda, J. Davidsson
MPG CFEL ASG	I. Schlichting, R. Shoeman, L. Lomb, S. Kessemeyer, T. Barends, J. Steinbrener, M. Bott, D. Rolles, S. Epp, A. Rudenko, L. Strüder, R. Hartmann, L. Foucar, N. Kimmel, P. Holl, T. Barends, J. Ullrich
LLNL	S. Hau-Riege, M. Frank
CAMP Team	Led by J. Ullrich and I. Schlichting
LCLS detector	C. Kenney, R. Herbst, J. Pines, P. Hart, J. Morse
Accelerator	Led by P. Emma

Vetenskapsrådet

Lundberg Stiftelsen

HUMAN FRONTIER SCIENCE PROGRAM FUNDING FRONTIER RESEARCH INTO COMPLEX BIOLOGICAL SYSTEMS

Purple photosynthetic bacteria

Blooming purple nonsulfur bacteria in a coastal lagoon

Faculty of Science

Photosynthetic Reaction Centre

- MEMBRANE PROTEIN
- 135 kDa
 - 4 subunits
 - H, L, M, cytochrome c
 - 13 cofactors
 - 4 heme irons
 - 4 bacteriochlorophyll
 - 2 bacteriopheophytin
 - menaquinone
 - non-heme iron
 - ubiquinone

Photosynthetic Reaction Centre

- Light photo-excites special pair of chlorophylls (P_{960}).
- Electron transferred to mobile quinone (Q_B) .
- fs to ms time-scales.

Electron & proton movements

- Complex light driven proton pump.
 - Electron movements driven by light.
 - Coupled redox reactions pump protons.
- Descendent created O₂ rich atmosphere.

Linac Coherent Light Source (LCLS) Stanford, USA

LCLC SLAC NATIONAL ACCELERATOR LABORATORY

132 m long undulator

-

Microbunching of electrons

- Electrons form periods that matches the emission wavelength
 - Constructive
 interference
 - Exponential amplification of beam intensity

Self-amplified sponaneous emission and seeding

- Shot noise gets amplified leading to instability in:
 - Beam position
 - Temporal profile
 - Wavelength (spectrum)
 - Intensity
- Seeding can stabilize, but there are no X-ray seed lasers
 - Solution is recycling cleaned XFEL radiation

Free Electron Lasers and Structural Biology

- First hard XFEL source was LCLS in Stanford, US (2009)
- Exploit microcrystals
- Time-resolved studies

Henderson's limit: 20 MGy, Garman's 30 MGy

Neutze et al. Nature 2000

Paradigm shift in data collection

Membrane Protein Crystallisation

Micro-crystallization of *Bl. viridis* photosynthetic reaction centre

- Crystals grow in a lipidic sponge phase medium.
 - Linda Johansson, David Arnlund.

UNIVERSITY OF GOTHENBURG

Micro-crystal injection

- Liquid jet $\leq 4 \ \mu m$ in diameter.
- Developed at Arizona state University.
 - John Spence, Uwe Weierstall, Bruce Doak, Petra Fromme, Dan DePonte, David Shapiro.

- Data processing algorithms developed at CFEL, Hamburg.
 - Henry Chapman, Thomas White, Anton Barty, Richard Kirian et al.
- ~1500 hits; 265 images processed; 90 minutes beamtime.

Deisenhofer, Michel et al Nobel prize (1988)

P2₁2₁2, a=85 Å, b=139 Å, c=178 Å, Large sponge phase crystals Wöhri et al Biochemistry (2009), Wöhri et al Science (2010)

+ various unpublished RC crystal forms while trying to get the LHI-RC complex (at least 3 diffracting better than 5 Å)

8.2 Å serial crystallography structure of a photosynthetic reaction center

 $P2_12_12_1$ a = 58 Å, b = 85 Å, c = 376 Å

Data extends to 2.8 Å resolution using 1.4 Å X-rays

Data collection & refinement	
Total number of recorded images	2,744,614
Number of confirmed diffraction patterns	5,767
Number of indexed images	1,175
Space group	P2 ₁ 2 ₁ 2 ₁
a, b, c (Å)	57.9, 84.8, <mark>384.3</mark>
Completeness (%)	99.1 (93.4)
Multiplicity	27.0 (27.6)
Overall R _{split} on I (%)	36.5 (52.7)
Mean I/σ(I)	3.50 (2.0)
CC _{1/2} §	0.54 (0.32)
Refinement resolution limits (Å)	49.6 - 3.50
R _{work} /R _{free}	29.4 / 32.7

Representative reflections

Intensity distribution of merged reflections (acentric)

Rmerge vs batch

XFEL data Synchrotron data

Completeness vs batch

XFEL data Synchrotron data

Cumulative multiplicity

XFEL data Synchrotron data

I/sigma vs resolution

XFEL data Synchrotron data

Anisotropy of CC1/2

XFEL data Synchrotron data

Anisotropy of I/sigma

XFEL data Synchrotron data

Completeness vs resolution

XFEL data Synchrotron data

Cumulative intensity distribution

XFEL data Synchrotron data

Wilson plot

XFEL data

Synchrotron data

3.5 Å SFX structure

Composite omit map

Thioether bond

100 K,100 K,RT SFX4.4 MGy77 MGy33 MGy

- A thioether bond links the tetraheme subunit N-terminal cysteine to a diacylglycerol molecule.
 - Susceptible to radiation damage.

Opinion (Conclusion?)

- Oscillation data collection is just one of the many ways reflection intensities can be estimated
 - What are the most useful alternatives for synchrotrons?
- Cross crystal averaging often advantageous
- Radiation damage much less apparent
 - SFX better
 - Microseconds to Henderson, more intense problematic

- Serial crystallography for pump-probe studies of irreversible reactions
 - Intense microfocus beamlines will be very useful
 - Detector readout rate need to keep up with intensity

UNIVERSITY OF GOTHENBURG

Sigma correction

XFEL data Synchrotron data

CC1/2 vs resolution

XFEL data Synchrotron data

Rcp vs batch

XFEL data Synchrotron data

Metal Centres

Green: mF_{obs} -DF_{calc} calculated with Mg²⁺ & Fe²⁺ ions removed.

