ANKA Status Report

N. Smale, on behalf of all ANKA colleagues, Directors: A.-S. Müller, C Heske, T Baumbach.
Normal users (2.5GeV)

Other users
Approx 18% of machine running time is used for machine studies:
• Single bunch
• Low alpha
• Low energy

2014 is heading back to the normal 4500 hours of operation even with time for new IDs, new beamlines, and upgrades.

Machine Failures > 11h, mostly come-about due to no 24h tech support.
• 1x MF service provider (ENBW) lost onsite power
• 1x MF injection kicker failed for evening injection
• 5x MF often during the night, spread over 3 months, spontaneous noise getting passed the amplitude loop filter.
Beamlines and ID

- Beamline being commissioned
 - SCU15 ID Demo tests in Dec

- 19 beamlines, 3 in the last year
 - CAT-ACT ID being commissioned
 - Beamline being built
 - X-SPEC ID 2015
 - Commissioning next year
News in Brief

- Superconducting CAT-ACT wiggler (2014)
- Superconducting SCU15DEMO undulator (2014)
- Superconducting CLIC damping wiggler (2015)
- Dual wavelength X-Spec undulator (2015)
- Superconducting SCU 20 undulator (2016)
- Longitudinal BBB feedback system (2015)
- Fast orbit correction (2015)

- FLUTE; small-scale test facility for THz generation, compression, radiation transport and instrumentation. Present status: laser clean room ready, bunker installation started, large part of components ordered.
CAT-ACT High energy beamline for CATalysys and ACTinide research (KIT and BINP collaboration). Commissioned in July 2014

<table>
<thead>
<tr>
<th>Period-length</th>
<th>48 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Main Poles</td>
<td>36</td>
</tr>
<tr>
<td>Pole scheme</td>
<td>$\frac{1}{4} - \frac{3}{4} 1 - 1 \ldots \frac{3}{4} - \frac{1}{4}$</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>2.5 T</td>
</tr>
<tr>
<td>Ramp-Time</td>
<td>< 5 min</td>
</tr>
<tr>
<td>k</td>
<td>11.2 < 15</td>
</tr>
<tr>
<td>P @ 200 mA</td>
<td>4.3 < 5 kW</td>
</tr>
<tr>
<td>Magnetic gap</td>
<td>20 mm</td>
</tr>
<tr>
<td>Vacuum stay clear</td>
<td>15 mm</td>
</tr>
</tbody>
</table>

The CAT-ACT wiggler had been installed in the summer shut down and meanwhile also successfully tested with beam. This wiggler is a superconducting device manufactured by BINP-Novosibirsk. The magnets are in a LHe-bath, cooled by internal cold-heads with zero LHe consumption.
SCU15DEMO test at the Image beam line (KIT BNG collaboration). Goes in Dec 2014

• Cooling time 7 days
• Warming up 4 days
• Ramping <600 s

\[\lambda_U = 15 \text{ mm} \]

100.5 full periods

\[B = 0.69 \text{ T} \]

\[v. \text{ gap} = 7 \text{ mm} \]

\[k = 0.98 \]
Replacement of Control System

New control system is based on EPICS and CSS.

- Slow but sure transition to insure transparency for the operators.
- ~500 physical devices to be moved, ~70% done.
- ~25000 EPICS process variables to be read out at up to 10 Hz.
Alarm statistics are available with a www browser. Stats are important for preventative maintenance.

Save and restore. All machine parameters can be set back to any time with second resolution. Also can filter on changed values.
Power Supplies

- Onset of Danfysik 800/8500 series failures since mid 2011

Actions

- Successive replacement of analogue to switch mode power supplies in progress. Common power supply stacked to give necessary power.
- Most of booster completed.
- SR klystron focus and main coils soon.

- KEPCO four quadrant power supply problems and slow repair from Compuserve
BPM System for ANKA

Since 2012 41 LIBERA-Brilliances have been running

Status:

- No devices have been sent back for repair
- Lost clock to the rack sent us on a wild goose chase.
- One firmware corruption, fixed by ITECH remotely, no charge.
- We have had great support from both ITECH and Diamond.
- Diamond FA Archiver installed.

The FA Archiver captures full beam position orbit data at 10 kHz to a short term rolling archive, and republishes the live data stream to interested client applications. We will use it as part of the postmortem data.

µTCA being used for fast orbit correction. Next step is to replace corrector power supplies and magnets.
Running a 2 dimensional Dimtel BBB system since end of October 2013.
→ Routinely used at 2.5 GeV to damp vertical and horizontal instabilities.
→ Operates through ramp.
→ Continuous tune measurements.
→ Very useful during MP

Amplifier: Milmega AS0102-200 200 WATT

Dimentions h,w,l (mm) = 105,105,272
Resonant freq = 1.375 GHz
Q=5 (broad band)
Bandwidth = 275 MHz
Based on BESSY design, FMB built ~30k€

Thanks go to: Shaukat Khan & Markus Höner (DELTA), Andreas Jankowiak & Jörg Kolbe (BESSY)
Low Level RF (LLRF)

• The present Low Level Electronics is completely analog and was purchased from ELETTRA ~1999. Essential components are the phase, amplitude and frequency loop. Their specifications are:
 • Phase loop: Stability: < 0.5° Range: 20° Bandwidth: 1.4 kHz
 • Amplitude: Stability: <1% Range: 30 dB Bandwidth: 10 – 1000 Hz
 • Freq Loop: Stability: < 0.5% Range: 40 dB Bandwidth: 30 kHz
 • Interlock type: RF-Drive switch, opto-isolated interlock output

ANKA intends to replace the existing ELETTRA analogue LLRF with a digital system.
Review of Consolidation Plans from last year

- Fast orbit feedback magnets required *(selection process started)*
 - to reduce low frequency oscillations
 - improved current, stability, ...
- New RF amplifiers *(still in the future)*
 - replace klystrons
- Replacement of the present control system *(SCADA)* *(very large proportion completed)*
 - enhanced reliability and modularity when adding further components
- Installation of new superconducting insertion devices *(very active)*
- Considerable increase of the machine personnel *(growing, but not fast)*
 - sustain a critical mass, implement upgrades & develop future projects
Summary

- Machine reliability and availability is on the way up.
- ANKA is very active at present with new beamlines and IDs
- Migration to EPICS has shown many obvious benefits, not least, an improvement in reliability.
- With a new LLRF, fast orbit feedback, fully functional BBB, and state-of-the-art diagnostics (Marcel’s talk), the finer details of beam quality can now be addressed.
Thank you for your attention