SLS Status and Development of an SLS2 Upgrade

Michael Ehrlichman, Masamitsu Aiba, Michael Böge, Angela Saa-Hernandez, Andreas Streun
Paul Scherrer Institut, Villigen, Switzerland

ESLS XXII meeting, Grenoble, Nov. 2014
SLS in 13th year of user operation: 18 beam lines

Performance 2014 (Jan.-Oct.)

Availability 97.2 %

MTBF 122 h

Two Major Incidents:
- U14 Broken Taper Foil, 76 hrs downtime
 - Located by activation
- 1-Second power outage, 65 hrs downtime
 - Helium compressor shut-off, partial warming of 3HC.
BPM system replacement

- New SLS BPM electronics
 - In-house design
 - Synergy with SwissFEL & E-XFEL (BPM FPGA board hardware, firmware, software, etc.)
 - Prototype: <100nm RMS noise at 2kHz BW (k=10mm geometry factor).
- New FOFB
 - Global BPM data transfer, one feedback engine (present system: 12 sector FBs communicating with adjacent sectors, 4KHz correction rate), more robust.
 - All feedback algorithms implemented low-level (DSP/FPGA) with ~10kHz correction rate (now: dispersive correction & photon BPM FB on high-level PC with few Hz correction rate).
 - Feedback algorithm in high-level language (presently: DSP assembler) provides better performance and allows adding new features:
 - Integration of coupling correction in FOFB: “2nd order orbit correction”.
 - Fast polarization switching for PolLux and PEARL. Now: Slow reference to FOFB & feed forward for coupling.
- Schedule
 - Replacement 2016/17 (team presently busy with SwissFEL & E-XFEL BPMs & feedbacks).

1 “Development of New BPM Electronics for the Swiss Light Source”, W. Koprek, IBIC2012
SLS FOFB: Feedback Loops

Present System

Future System

Part of BPM (Calc: X,Y,...)

EPICS IOCs / VME Crates

DSP Boards

Digitizer/DDC Boards

RF Front-Ends

Button Pickups

Corrector Magnets

Beam Dynamics Server PC

Control Room GUI PCs

Power Supply Interface Board

Corrector Power Supplies

“Stupid”: Sends 4 amplitudes

FOFB electronics

Fast LOCAL feedback loop (4kHz): Each DSP gets only data from 18 BPMs.

Slow GLOBAL feedback loop, few Hz: (RF frequency & horizontal dispersion correction)

Just for FOFB Algorithm

EPICS IOCs / VME Crates

DSP Board

Power Supply Interface Board

Digitizer/DDC Boards

RF Front-Ends

Button Pickups

Corrector Magnets

Beam Dynamics Server PC

Control Room GUI PCs

Power Supply Interface Board

Corrector Power Supplies

Intelligent/autonomous (XY, FFT, Fault Detect, FOFB Interface, ...)

Fast GLOBAL feedback loop (10-20kHz): New global real-time network.

Boris Keil, PSI, SYN-GFA Meeting
Motivation for an SLS2 Upgrade

• SLS commissioned in 2000
 – Serving 18 beamlines with >97 % uptime
 – 5.5 nm x 5 pm emittance beams at 400 mA

• New, state-of-the-art machines coming online
 – MAX-IV, NSLS2, ESRF Upgrade, PETRA 3, et. al.

• Need to stay competitive

• Project Goals
 – Replace SLS with significantly lower emittance design
 – Maintain existing building, injector, beam lines
 – Minimize downtime and impact to users
 – Moderate budget (<100 MCHF)
Storage rings in operation (●) and planned (●). The old (—) and the new (—) generation.

The storage ring generational change

Riccardo Bartolini (Oxford University)
4th low emittance rings workshop, Frascati, Sep. 17-19, 2014
SLS-2 design constraints and the main challenge

- **Constraints**
 - keep circumference: hall, tunnel.
 - re-use injector: booster, linac.
 - keep beam lines: avoid shift of source points.
 - limited “dark time” for upgrade.

- **Challenge: small circumference**
 - Scaling MAX IV to SLS size and energy gives $\varepsilon \approx 1$ nm.
 - Multi bend achromat: $\varepsilon \propto (\text{number of bends})^{-3}$
 - Damping wigglers (DW): $\varepsilon \propto \frac{\text{ring}}{\text{ring} + \text{DW}}$ radiated power
 - Low emittance from MBA and/or DW requires space!
Compact low emittance lattice concept

- Longitudinal gradient bends (LGB): field variation $B = B(s)$
 - $\varepsilon \propto \int (\text{dispersion}^2 \ldots) \times (\text{B-field})^3 \, ds$
 - high field at low dispersion and v.v.

- Anti-bends: $B < 0$
 - matching of dispersion to LGB
 - factor ≈ 5 lower emittance compared to a conventional lattice

- Additional benefits
 - Hard X-rays (≈ 80 keV) from B-field peak (≈ 5 Tesla)
 - ε-reduction due to increased radiated power from high field and from $\Sigma|\text{angle}| > 360^\circ$ (“wiggler lattice”)

A compact low emittance cell

- Conventional cell vs. longitudinal-gradient bend/anti-bend cell
 - both: angle 6.7°, \(E = 2.4 \text{ GeV} \), \(L = 2.36 \text{ m} \), \(\Delta \mu_x = 160° \), \(\Delta \mu_y = 90° \), \(J_x \approx 1 \)

 conventional: \(\varepsilon = 990 \text{ pm} \)

 LGB/AB: \(\varepsilon = 200 \text{ pm} \)

\[\beta_x \quad \beta_y \]

\[\text{Disp.} \]

\(\text{at} \ R = 13 \text{ mm} \)

\[\text{dipole field} \quad \text{quad field} \quad \text{total field} \]
Lowest emittance Prototype

- Maximal application of longitudinal gradient bend/anti-bend cell concept

Quadrupole:
SC Longitudinal Gradient Bend:
Longitudinal Gradient Bend:
Anti-Bend:

\[\Sigma |\Phi| = 460^\circ \]

Peak B field: 5.7 T

\[\beta_{x,\text{min, sb}} = 0.06 \, \text{m} \]
\[\beta_{x,\text{min, else}} = 0.15 \, \text{m} \]
Comparison

<table>
<thead>
<tr>
<th></th>
<th>NSLS 2</th>
<th>PEP-X</th>
<th>MAX-IV</th>
<th>SLS</th>
<th>SLS2 (concept)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0 (GeV)</td>
<td>3</td>
<td>4.5</td>
<td>3</td>
<td>2.411</td>
<td>2.4</td>
</tr>
<tr>
<td>Circ. (m)</td>
<td>780</td>
<td>2199</td>
<td>528</td>
<td>288</td>
<td>288</td>
</tr>
<tr>
<td>ε_x (pm)</td>
<td>550</td>
<td>11</td>
<td>320</td>
<td>5000</td>
<td>72</td>
</tr>
<tr>
<td>ν_x</td>
<td>32.35</td>
<td>113.23</td>
<td>42.2</td>
<td>20.43</td>
<td>39.42</td>
</tr>
<tr>
<td>ν_y</td>
<td>16.28</td>
<td>65.14</td>
<td>14.28</td>
<td>8.74</td>
<td>10.76</td>
</tr>
<tr>
<td>α_p</td>
<td>3.7×10^{-4}</td>
<td>5.0×10^{-5}</td>
<td>3.1×10^{-4}</td>
<td>6.0×10^{-4}</td>
<td>-5.4×10^{-5}</td>
</tr>
<tr>
<td>ξ_x</td>
<td>-100.</td>
<td>-162.3</td>
<td>-49.8</td>
<td>-67.3</td>
<td>-154.7</td>
</tr>
<tr>
<td>ξ_y</td>
<td>-41.8</td>
<td>-130.1</td>
<td>-43.9</td>
<td>-22.2</td>
<td>-46.4</td>
</tr>
<tr>
<td>$-\xi_x/\nu_x$</td>
<td>3.1</td>
<td>1.2</td>
<td>1.2</td>
<td>3.3</td>
<td>3.9</td>
</tr>
<tr>
<td>$-\xi_y/\nu_y$</td>
<td>2.6</td>
<td>2.0</td>
<td>3.1</td>
<td>2.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>

• Nonlinear momentum compaction makes this cell unfit for the SLS2 upgrade.
Longitudinal Dynamics

- Lattice is below transition.
- Momentum compaction is dominated by nonlinear terms.
- Goal: ±5% bucket.
- Limits injection scheme options.
- Manipulation of momentum compaction by multipoles seems to always require too large a sacrifice in DA.

\[\frac{dz}{dp} = 0.0155 \]
\[\frac{d^2z}{dp^2} = -0.339 \]
\[\frac{d^3z}{dp^3} = 0.149 \]
\[\frac{d^4z}{dp^4} = -5.609 \]

Bucket size limited by non-linear roll-off in momentum compaction

+z is head of bunch
Large Chromatic Tune Shifts

- Sextupole scheme that yields acceptable on-momentum DA, results in a large chromatic tune footprint.
Large Positive α_p Prototype

- Adjust optics for finite dispersion in ordinary bends to generate large positive α_p.

\[\Sigma |\Phi| = 391^\circ. \]
<table>
<thead>
<tr>
<th></th>
<th>NSLS 2</th>
<th>PEP-X</th>
<th>MAX-IV</th>
<th>SLS</th>
<th>SLS2 (concept)</th>
<th>SLS2 (α_p >> 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0 (GeV)</td>
<td>3</td>
<td>4.5</td>
<td>3</td>
<td>2.411</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Circ. (m)</td>
<td>780</td>
<td>2199</td>
<td>528</td>
<td>288</td>
<td>288</td>
<td>288</td>
</tr>
<tr>
<td>ε_x (pm)</td>
<td>550</td>
<td>11</td>
<td>320</td>
<td>5000</td>
<td>72</td>
<td>183</td>
</tr>
<tr>
<td>v_x</td>
<td>32.35</td>
<td>113.23</td>
<td>42.2</td>
<td>20.43</td>
<td>39.42</td>
<td>39.39</td>
</tr>
<tr>
<td>v_y</td>
<td>16.28</td>
<td>65.14</td>
<td>14.28</td>
<td>8.74</td>
<td>10.76</td>
<td>10.76</td>
</tr>
<tr>
<td>α_p</td>
<td>3.7 10^{-4}</td>
<td>5.0 10^{-5}</td>
<td>3.1 10^{-4}</td>
<td>6.0 10^{-4}</td>
<td>-5.4 10^{-5}</td>
<td>1.3 10^{-4}</td>
</tr>
<tr>
<td>ξ_x</td>
<td>-100.</td>
<td>-162.3</td>
<td>-49.8</td>
<td>-67.3</td>
<td>-154.7</td>
<td>-163.7</td>
</tr>
<tr>
<td>ξ_y</td>
<td>-41.8</td>
<td>-130.1</td>
<td>-43.9</td>
<td>-22.2</td>
<td>-46.4</td>
<td>-70.46</td>
</tr>
<tr>
<td>-ξ_x/v_x</td>
<td>3.1</td>
<td>1.2</td>
<td>1.2</td>
<td>3.3</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>-ξ_y/v_y</td>
<td>2.6</td>
<td>2.0</td>
<td>3.1</td>
<td>2.5</td>
<td>4.3</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Emittance reduction not as impressive
α_p is better
Challenging nonlinearities
Large Negative α_p Prototype

- Large dispersion in anti-bends generates large negative α_p.

$$\Sigma |\Phi| = 506^\circ$$
Comparison

<table>
<thead>
<tr>
<th></th>
<th>NSLS 2</th>
<th>PEP-X</th>
<th>MAX-IV</th>
<th>SLS</th>
<th>SLS2 concept</th>
<th>SLS2 ($\alpha_p >> 0$)</th>
<th>SLS2 ($\alpha_p << 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0 (GeV)</td>
<td>3</td>
<td>4.5</td>
<td>3</td>
<td>2.411</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Circ. (m)</td>
<td>780</td>
<td>2199</td>
<td>528</td>
<td>288</td>
<td>288</td>
<td>288</td>
<td>288</td>
</tr>
<tr>
<td>ε_x (pm)</td>
<td>550</td>
<td>11</td>
<td>320</td>
<td>5000</td>
<td>72</td>
<td>183</td>
<td>162</td>
</tr>
<tr>
<td>ν_x</td>
<td>32.35</td>
<td>113.23</td>
<td>42.2</td>
<td>20.43</td>
<td>39.42</td>
<td>39.39</td>
<td>35.58</td>
</tr>
<tr>
<td>ν_y</td>
<td>16.28</td>
<td>65.14</td>
<td>14.28</td>
<td>8.74</td>
<td>10.76</td>
<td>10.76</td>
<td>13.86</td>
</tr>
<tr>
<td>α_p</td>
<td>3.7×10^{-4}</td>
<td>5.0×10^{-5}</td>
<td>3.1×10^{-4}</td>
<td>6.0×10^{-4}</td>
<td>-5.4×10^{-5}</td>
<td>1.3×10^{-4}</td>
<td>-1.0×10^{-4}</td>
</tr>
<tr>
<td>ξ_x</td>
<td>-100.</td>
<td>-162.3</td>
<td>-49.8</td>
<td>-67.3</td>
<td>-154.7</td>
<td>-163.7</td>
<td>-73.0</td>
</tr>
<tr>
<td>ξ_y</td>
<td>-41.8</td>
<td>-130.1</td>
<td>-43.9</td>
<td>-22.2</td>
<td>-46.4</td>
<td>-70.46</td>
<td>-40.6</td>
</tr>
<tr>
<td>$-\xi_x/\nu_x$</td>
<td>3.1</td>
<td>1.2</td>
<td>1.2</td>
<td>3.3</td>
<td>3.9</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td>$-\xi_y/\nu_y$</td>
<td>2.6</td>
<td>2.0</td>
<td>3.1</td>
<td>2.5</td>
<td>4.3</td>
<td>6.5</td>
<td>2.9</td>
</tr>
</tbody>
</table>

- Acceptable DA & **tune shifts** not found when using local optimizer on NDTs.
- Off-momentum DA is esp. important (+/- 5%).
- Now working with multi-objective genetic optimizer.

Relaxed optics

Better ε_x

α_p is linear
7BA Superbend Cell (preliminary)

- 7BA constructed of superbends and antibends.
- Cancelation of 1st order driving terms.
- Increased radiation.
- Weaker SC field required (4.5 T).

SC Longitudinal Gradient Bend: \(\)
Anti-Bend: \(\)

\[\sum |\Phi| = 504^\circ \]
Comparison

<table>
<thead>
<tr>
<th></th>
<th>NSLS 2</th>
<th>PEP-X</th>
<th>MAX-IV</th>
<th>SLS</th>
<th>SLS2 (concept)</th>
<th>SLS2 (α >> 0)</th>
<th>SLS2 (α << 0)</th>
<th>SLS2 (7BA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0 (GeV)</td>
<td>3</td>
<td>4.5</td>
<td>3</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Circ. (m)</td>
<td>780</td>
<td>2199</td>
<td>528</td>
<td>288</td>
<td>288</td>
<td>288</td>
<td>288</td>
<td>288</td>
</tr>
<tr>
<td>ε_x (pm)</td>
<td>550</td>
<td>11</td>
<td>320</td>
<td>5000</td>
<td>72</td>
<td>183</td>
<td>162</td>
<td>131</td>
</tr>
<tr>
<td>v_x</td>
<td>32.35</td>
<td>113.23</td>
<td>42.2</td>
<td>20.43</td>
<td>39.42</td>
<td>39.39</td>
<td>35.58</td>
<td>37.38</td>
</tr>
<tr>
<td>α_p</td>
<td>3.7×10^{-4}</td>
<td>5.0×10^{-5}</td>
<td>3.1×10^{-4}</td>
<td>6.0×10^{-4}</td>
<td>-5.4×10^{-5}</td>
<td>1.3×10^{-4}</td>
<td>-1.0×10^{-4}</td>
<td>-1.1×10^{-4}</td>
</tr>
<tr>
<td>ξ_x</td>
<td>-100.</td>
<td>-162.3</td>
<td>-49.8</td>
<td>-67.3</td>
<td>-154.7</td>
<td>-163.7</td>
<td>-73.0</td>
<td>-63.7</td>
</tr>
<tr>
<td>ξ_y</td>
<td>-41.8</td>
<td>-130.1</td>
<td>-43.9</td>
<td>-22.2</td>
<td>-46.4</td>
<td>-70.46</td>
<td>-40.6</td>
<td>-45.1</td>
</tr>
<tr>
<td>$-\xi_x/v_x$</td>
<td>3.1</td>
<td>1.2</td>
<td>1.2</td>
<td>3.3</td>
<td>3.9</td>
<td>4.2</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>$-\xi_y/v_y$</td>
<td>2.6</td>
<td>2.0</td>
<td>3.1</td>
<td>2.5</td>
<td>4.3</td>
<td>6.5</td>
<td>2.9</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- 7BA Superbend cell is very preliminary.
- 60 superbends will be more expensive than 12.

Better ε_x
Good α_p
Relaxed linear optics
Vertical nonlinearities challenging
IBS in Anti-Bend LGB Cell

- IBS is nonlinear, but for high-γ, a rough scaling is\(^1\):
 \[
 \frac{1}{\tau_{\text{IBS}, \perp}} = \frac{H_x}{\beta_x \sqrt{\beta_x \beta_y}}
 \]

- Can be mitigated by round beam scheme (1/2 the emittance).

- Only weakly dependent on RF, due to current requirements.

\[\text{Table: Prototype Lattices}\]

<table>
<thead>
<tr>
<th>Prototype Lattices</th>
<th>Zero Current Radiation Only ε_x</th>
<th>5 mA, 100 MHz 5% Bucket, 3HC (2x BL) 10 pm ε_y ε_x</th>
<th>1 mA, 500 MHz 5% Bucket, 3HC (2x BL) 10 pm ε_y ε_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td>73 pm</td>
<td>110 pm</td>
<td>95 pm</td>
</tr>
<tr>
<td>$\alpha \ll 0$</td>
<td>183 pm</td>
<td>210 pm</td>
<td>202 pm</td>
</tr>
<tr>
<td>$\alpha \gg 0$</td>
<td>162 pm</td>
<td>200 pm</td>
<td>187 pm</td>
</tr>
<tr>
<td>LGB 7BA</td>
<td>131 pm</td>
<td>157 pm</td>
<td>143 pm</td>
</tr>
</tbody>
</table>

\(^1\)A. Fedotov. “Comments on simplified treatment of intrabeam scattering using plasma approach.”, 2004
Injection Schemes

- **Goals:**
 1. Minimize user impact during top up
 2. Compact layout
 3. Minimize DA requirements
- “4 kicker” scheme meets none of these goals
- Longitudinal injection
 - Potentially meets all three goals.
 - Challenges
 - Requires “golf club” acceptance
 - Requires big momentum acceptance
 - Technological hurdles if 500 MHz used
- Multipole kicker injection
 - Possible solution, but off-axis, requires larger DA
- **Investigating hybrid approach**
 - Use multipole kicker to kick off-momentum particle onto dispersive closed orbit.
 - Near-on-axis, off-momentum.

Bunch injected on-axis, but onto “golf club” shaft in front of stored bunch.
SLS-2 Design Research

- **Find cell design** that gives sub-200 pm emittance and allows for acceptable DA and tune shifts.
- **Design & prototyping of SC Superbends.**
- **Study machine impedance**, decide on RF system.
 - Perhaps negative chromaticity with negative momentum compaction will also suppress head-tail & coupled bunch.
- **Explore round beam schemes.**
 - Split the emittance, makes IBS negligible
 - Round beam desired by most users.
- **Develop orbit feed-back based on photon BPMs.**
 - Carry over from SLS BPM Upgrade Project.
 - Lattice too dense for placing RF-BPMs at all locations.
- **Explore on-axis injection schemes.**
- **MOGA and PSO** for direct optimization of dynamic aperture.
 - Assisted by NDT calculations.
Conclusion

- SLS-2 design is constrained by comparatively small ring circumference.
- New LGB/AB cell provides a solution for compact low emittance rings.
- An emittance of 100-200 pm seems possible with contemporary magnet technology.
- But feasibility has not yet been proven.
- Project is in Concepts & Research phase.
- A conceptual design report is planned for 2016.