Neutron production

Ulli Köster, ILL

What is a neutron?

1. a subatomic particle

2. a matter wave

Neutrons are everywhere

Bound neutrons are everywhere Others - Nitrogen 3% 10% Hydrogen -Carbon -18% 65% Carbon-13 Carbon-12 - Oxygen 98.9% 1.1% 6 protons 6 protons 7 neutrons 6 neutrons 45% neutrons

The Neutron's Circle of Life

- 1. How neutrons are born
- 2. How neutrons are conformed to use
- 3. How neutrons die
- 4. What neutrons are good for (except neutron scattering and nuclear spectroscopy)

1. Alpha-induced reactions: ${}^{9}Be(\alpha,n){}^{12}C$ +5.7 MeV

C 11	C 12	C 13	
20.38 m	98.93	1.07	
β ⁺ 1.0 no γ	σ 0.003 5	σ 0.0014	
B 10	B 11	B 12	
19.9	80.1	20.20 ms	
σ 0.3 σ _{n.α} 3840 σ _{n.p} 0.007	σ 0.005	β 13.4 γ 4439 βα 0.2	
Be 9	Be 10	Be 11	
100	1.387·10 ⁶ a	13.8 s	
σ 0.0078	β [−] 0.6 noγ σ < 0.001	β ⁻ 11.5 γ 2125, 6791 βα 0.77, 0.29	

- 1. Alpha-induced reactions: ${}^{9}Be(\alpha,n){}^{12}C$ +5.7 MeV
- 2. Deuteron fusion: d(d,n)³He +3.3 MeV, t(d,n)⁴He +17.6 MeV

He	He 3	He 4		
4.002602	0.000134	99.999866		
σ _{abs} < 0.05	σ 0.00005 σ _{n.p} 5330			
H 1	H 2	H 3		
99.9885	0.0115	12.312 a		
σ 0.332	σ 0.00051	β 0.0185743 σ < 6E-6		

- 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV
- 2. Deuteron fusion: d(d,n)³He +3.3 MeV, t(d,n)⁴He +17.6 MeV
- 3. Photo-dissociation: ${}^{9}Be(\gamma,n)2\alpha$ -1.66 MeV

- 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV
- 2. Deuteron fusion: d(d,n)³He +3.3 MeV, t(d,n)⁴He +17.6 MeV
- 3. Photo-dissociation: ${}^{9}Be(\gamma,n)2\alpha$ -1.66 MeV

- **1.** Alpha-induced reactions: ${}^{9}Be(\alpha,n){}^{12}C + 5.7 \text{ MeV}$
- **2. Deuteron fusion:** d(d,n)³He +3.3 MeV, t(d,n)⁴He +17.6 MeV
- 3. Photo-dissociation: ⁹Be(γ,n)2α -1.66 MeV
- 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV
- 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV

- **1.** Alpha-induced reactions: ${}^{9}Be(\alpha,n){}^{12}C + 5.7 \text{ MeV}$
- **2. Deuteron fusion:** d(d,n)³He +3.3 MeV, t(d,n)⁴He +17.6 MeV
- 3. Photo-dissociation: ⁹Be(γ,n)2α -1.66 MeV
- 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV
- 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV
- 6. Beta-delayed n emission: ${}^{87}Br(\beta){}^{87}Kr^* \rightarrow {}^{86}Kr+n + 1.3 \text{ MeV}$

Kr 86 17.279	Kr 87 76.3 m	Kr 88 2.84 h β ⁻ 0.5, 2.9		
σ 0.003	β 3.5, 3.9 γ 403, 2555 845	2392, 196 2196, 835 1530		
Br 85 2.87 m	Br 86 55.1 s	Br 87 55.7 s		
β 2.5 γ 802, 925 m	β 3.3, 7.6 γ 1565, 2751	p ⁻ 6.8. + 1420, 1476, 1578 532, 2006 552, 0.05		

- 1. Alpha-induced reactions: ${}^{9}Be(\alpha,n){}^{12}C + 5.7 \text{ MeV}$
- 2. Deuteron fusion: d(d,n)³He +3.3 MeV, t(d,n)⁴He +17.6 MeV
- 3. Photo-dissociation: ⁹Be(γ,n)2α -1.66 MeV
- 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV
- 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV
- 6. Beta-delayed n emission: ${}^{87}Br(\beta){}^{87}Kr^* \rightarrow {}^{86}Kr+n + 1.3 \text{ MeV}$
- 7. Spallation: ²⁰⁸Pb(p,3p 20n)¹⁸⁵Au -173 MeV

High energy nuclear reactions

T. Enqvist et al., Nucl. Phys. A 686 (2001) 481.

- 1. Alpha-induced reactions: ${}^{9}Be(\alpha,n){}^{12}C + 5.7 \text{ MeV}$
- 2. Deuteron fusion: d(d,n)³He +3.3 MeV, t(d,n)⁴He +17.6 MeV
- 3. Photo-dissociation: ⁹Be(γ,n)2α -1.66 MeV
- 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV
- 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV
- 6. Beta-delayed n emission: ${}^{87}Br(\beta){}^{87}Kr^* \rightarrow {}^{86}Kr+n + 1.3 \text{ MeV}$
- 7. Spallation: ²⁰⁸Pb(p,3p 20n)¹⁸⁵Au -173 MeV

A nuclear chain reaction

A single-pulse neutron source

Uncontrolled chain reaction of fast-neutron induced fission

≈25 kg of 93%²³⁵U

²³⁵U(n,f) cross-section as function of energy

 \approx 0.6% of fission neutrons are beta-delayed by 12 s on average \Rightarrow slows down reactor kinetics ($\Delta k = 0.001$) from ≈ 0.05 s to ≈ 80 s \Rightarrow essential for reliable control of reactor power

Research reactor

Components of a nuclear reactor

- 1. Fuel
- 2. Moderator
- 3. Control rods
- 4. Coolant
- 5. Pressure vessel
- 6. Containment
- Steam generator (for power plants) or experimental facilities (for research reactors)

Moderator

elastic collisions with light atoms (mass A): average energy loss $E_{n+1} - E_n = 2 E_n A/(A+1)^2$

 $ln(E_n) - ln(E_{n+1}) = \xi = 1 - (A-1)^2/(2A) * ln[(A+1)/(A-1)]$

Moderating power:	$\xi \Sigma_{scatter}$	
Moderating ratio:		$\xi \Sigma_{\text{scatter}} / \Sigma_{\text{abs.}}$
Light water (H ₂ O)	1.28	58
Heavy water (D ₂ O)	0.18	21000
Beryllium (Be)	0.16	130
Graphite (C)	0.064	200
Polyethylene $(CH_2)_x$	3.26	122

The first nuclear reactor on Earth

Choice of coolant

coolant = moderator \Rightarrow passive regulation \Rightarrow intrinsic safety

RBMK:

graphite moderator water cooling ⇒ positive void coefficient !

RHF fuel element

8 December 1987: Intermediate-Range Nuclear Forces Treaty

Some comments on recent events...

Reactor fuel elements = 1st barrier

Typical boiling-water reactor

Decay heat can be passively cooled by natural convection!

Secondary reactions

Safety features of the ILL reactor

Safety features of Generation 3+ reactors (EPR)

Power reactor

- heat used to produce electricity
- neutrons just to maintain heat not used chain reaction
- needs high power, high temperature and high pressure for good thermal efficiency
- BWR: 75 bar, 285°C
- PWR: 155 bar, 315°C
- 25 cm thick steel pressure vessel \Rightarrow defines lifetime (40..60 y)

Research reactor

- neutrons used for applications
- operates at lower power, low temperature (ILL 30-48°C) and low pressure (<14 bar)
- · vessel and all inserts made from pure Al-alloy
- modular and exchangeable \Rightarrow no finite lifetime

ILL: Replacement of the reactor vessel 1990-94

ILL: Replacement of the reactor vessel 1990-94

The risk profile of power versus research reactors

Spallation neutron source versus reactor

Advantage for reactor

- higher time-averaged flux (for high-flux reactor)
- flux very constant over time
- larger irradiation volume possible (multiple fuel elements)
- much lower electricity bill

Advantage for spallation neutron source

- pulsed operation much easier
- much higher peak flux for TOF applications
- does not carry "reactor" in its name

Urban legend:

"Reactors are dirty, spallation neutron sources are clean."

Back to physics:

the neutron as a tool to study fission

LOHENGRIN Setup

¹¹Li production in thermal neutron induced fission?

Detection of rare ternary particles A/q = 11/3 E/q = 5 MeV Exotic ??? ∆E (channels) 10¹³ per s produced worldwide in nuclear B power plants! Be 2.10⁻¹⁰ per fission E_{total} (channels)

Neutron (particle) physics:

the neutron as an object

Neutron Decay

• clean semi-leptonic decay

 $n \to p + e^- + \overline{\nu}_e$

• clear theoretical understanding:

only 3 free parameters in Standard Model

- ratio of coupling constants
- and its phase
- Quark mixing from the Cabibbo-Kobayashi-Maskawa matrix

n(udd)

$$\tau^{-1} \propto \left| V_{ud} \right|^2 \left(1 + 3\lambda^2 \right)$$

$$\lambda = \frac{g_A}{g_V}$$

 V_{ud}

Why is neutron-decay important?

neutron-decay provides key input for many disciplines: astrophysics, cosmology and particle physics

From cold to ultracold neutrons

Ultracold neutrons

Total reflection under any angle on suitable materials like Be, Ni, C \Rightarrow possibility to store for long time

The UCN facility PF2 at ILL

Measurements of the neutron lifetime $\tau_{\!n}$

A "typical" UCN storage experiment at ILL – MamBo I

Glass w alls: H=0.3 m, W=0.4 m L=0.5m ... 0.01 m (surface A and volume V sizeable)

$$\frac{1}{\tau_m} = \frac{1}{\tau_\beta} + \frac{1}{\tau_{\text{wall}}} + \dots$$

$$\mathfrak{r}_{wall} \rightarrow$$
 number of wall collisions
i.e. mean free path λ

Measure storage lifetime τ_{st} for different volume to surface ratios V/A and extrapolate for $V \rightarrow \infty$

$$\frac{1}{\tau_{\text{wall}}} \to 0$$

"GRAVIT RAP" Neutron Lifetime Experiment at the PF2/MAM beam position in the ILL

Extrapolation to n-lifetime

Magnetic confinement

- For μ_n = -60.3 neV/T, a 2T field generates a 120 neV barrier.
- Force due to field gradient, $F = -\mu (dB/dz)$, repels only one spin state.
- Use permanent magnets.

Scales of temperature and energy in neutron physics

Neutrons as a tool for medicine

Cancer and efficiency of treatments

At time of diagnosis	Primary tumor	With metastases	Total
Diagnosed	58%	42%	100%
Cured by:			
Surgery	22%		
Radiation therapy	12%		
Surgery+radiation therapy	6%		
All other treatments and combinations incl. chemotherapy		5%	
Fraction cured	69%	12%	45%

Over one million deaths per year from cancer in EU.

 \Rightarrow improve early diagnosis

 \Rightarrow improve systemic treatments

Immunology approach

Nuclear medicine and medical physics

Lymphoma therapy: RITUXIMAB+¹⁷⁷Lu E.B., 1941 (m): UPN 6

Alternative production route to ¹⁷⁷Lu

Ta 175 10.5 h	Ta 176 8.1 h	Ta 177 56.6 h	Ta 178 9.25 m 2.45 h	Ta 179 665 d	Ta 180 0.012	Ta 181 99.988
ε γ 207; 349; 267; 82; 126; 1793	ε β ⁺ γ 1159; 88; 1225	ε β ⁺ γ 113; 208 9	β ⁺ 0.9 γ 93; 1351; ε 1341 γ 332 g m ₁	ε no γ g σ 930	σ~560 g	σ 0.012 + 20 σ _{n, α} <10 ^ε
Hf 174 0.16 2.0 · 10 ¹⁵ a α 2.50 σ 600	Hf 175 70.0 d	Hf 176 5.26 or 23	Hf 177 51 m 1.1 s 18.60 ¹ y ¹ y 208; 0:10 ⁻⁷ 295; 229; +1 327 379 + 375	Hf 178 31 a 4.0 s 27.28 hy hy 574; 426; 495; 326; 7? 217 213; + 54 or 45 89 + 32	Hf 179 25 d 18.7 s 13.62 ¹ y ^{454;} 363; 123; ¹ y214 146 ¹ y 46	Hf 180 5.5 h 35.08 1y 332; 443; 215; 57 β ⁻ m ⁻¹ <1.3 - 1 -1
Lu 173 1.37 a ^ε γ 272; 79; 101 e ⁻	Lu 174 142 d 3.31 a hy45; 67 ε σ ⁻ ;ε β ⁺ γ (1992; γ 1242; 76	Lu 175 97.41 0 ^{16 + 8}	Lu 176 2.59 3.68 h 38.10 ¹⁰ a β ⁻¹ 12; 13;ε γ 88 φ ⁻ 02.83 902;88 φ ⁻² 24.2100	$\begin{array}{c c} Lu & 177 \\ \hline 160.1 d & 6.71 d \\ \beta^{-0.2} & \beta^{-0.5} & \\ \gamma 414; & \\ 319; 122 & 113 \\ m; & g \\ \sigma .3.2 & \sigma 1000 \end{array}$	Lu 178 22.7 m 28.4 m β ⁻ 2.0 γ33: γ332 m ₁ 1269; g	Lu 179 4.6 h β ⁻ 1.4 γ214 9
Yb 172 21.83	Yb 173 16.13	Yb 174 31.83	Yb 175 4.2 d	Yb 176	15 177 6.5 s 1.9 h	Yb 178 74 m
σ~1.3 σ _{n, α} <1E-6	σ16 σ _{n. α} <1E-6	σ 63 σ _{n, α} <0.00002	β ⁺⁻ 0.5 γ 396; 283; 114	ly 293 390; 190; <mark>073.1</mark> 96	ly 104; 228 e g	β 0.6 γ 391; 348; 9
Tm 171 1.92 a	Tm 172 63.6 h	• Free of long-lived isomer			Tm 177 85 s	
β ⁻ 0.1 γ (67); e ⁻ σ~160	0.1 β ^{-1,8;1,9,} • Non-carrier-added quality 7/2; 1034; β • Non-carrier-added quality 1387; 1530; β • "Needs" high-flux reactor				β γ 105; 518 g; m	

Acknowledgements

Thanks for transparencies from: Hartmut Abele Roger Brissot Bruno Desbriere Peter Geltenbort Bastian Maerkisch Valery Nesvishevsky Anatoli Serebrov Oliver Zimmer