Inelastic x-ray scattering

Michael Krisch
European Synchrotron Radiation Facility
Grenoble, France

krisch@esrf.fr
Outline - I

1) Introduction
 scattering kinematics
 generic excitation spectrum & information content
 some instrumental aspects

2) Resonant IXS
 “XAS beyond the core hole lifetime broadening”

3) X-ray Raman scattering
 “Soft x-ray XAS in the hard x-ray range”

4) IXS – phonons
Introduction I – scattering kinematics

- Energy transfer: \(E_f - E_i = \Delta E = 1 \text{ meV} \) – several keV

- Momentum transfer: \(\vec{k}_f - \vec{k}_i = \vec{Q} = 1 - 180 \text{ nm}^{-1} \)
Introduction II - schematic IXS spectrum

- quasieelastic
- phonon, magnons, orbitons
- valence electron excitations
- plasmon
- core-electron excitation
- Compton profile

Introduction III – overview 1

Phonons

Lattice dynamics
- elasticity
- thermodynamics
- phase stability
- e- -ph coupling

Magnons

Spin dynamics
- magnon dispersions
- exchange interactions
Introduction IV – overview 2

Electron dynamics $\varepsilon(q, \omega)$
- plasmons
- excitons
- orbitons

Impulse distribution of electrons
- chemical bonding
- local structures
Introduction V – overview 3

X-ray Raman scattering

IXS from core electrons
- electronic structure
- bulk sensitivity for low Z materials
- access to final states beyond the dipole limit

Resonant IXS from core electrons
- electronic structure
- reduced life time broadening
X-ray emission/fluorescence
- element selective
- valence selective
- spin selective
- ligand selective
Energy analysis of scattered X-rays
- $\Delta E/E = 10^{-4} - 10^{-8}$
- some solid angle

Rowland circle crystal spectrometer

$p = R_{\text{crystal}} \cdot \sin \theta_B$

$R_{\text{crys}} = 2 \cdot R_{\text{Rowl}}$
Introduction VIII – IXS at the ESRF

ID20: Electronic and magnetic excitations

ID26: XAS and emission spectroscopy

ID28: Phonons

ID32: soft X-ray IXS

ID15B: Compton: 30%
Incident photon energy is tuned through the 2p\(_{3/2}\) edge.

The radiative decay channel, following the filling of the 2p\(_{3/2}\) core hole, is monitored.
Resonant IXS from core electrons - II

“XAS beyond the core hole lifetime broadening”

- E_{scatt} fixed, E_{inc} tuned through absorption edge.
- Spectral sharpening by energy selection of emission channel.

Partial Fluorescence Yield X-ray Absorption Spectroscopy
or
High Energy Resolution Fluorescence Detected XAS

\[1/\Gamma_{PFY} = \sqrt{\frac{1}{\Gamma_{2p}^2} + \frac{1}{\Gamma_{4d}^2}} \]

Pt L\(_3\)-edge
\[\Gamma_{L3} = 7 \text{ eV} \]
\[\Gamma_{M4,5} = 1.9 \text{ eV} \]

Significant spectral sharpening !!!

RIXS from core electrons– Applications 1

CO oxidation over gold nano-particles by high energy resolution XANES

Conventional Emission Spectrometer

In-situ study

Incident photon energy is tuned through the oxygen K-edge

Soft X-rays \Rightarrow (U)HV environment, surface sensitivity (?), experimental constraints

X-ray Raman scattering - II

Role of incident photon energy in XAS is played by the energy transfer in XRS

\[E_{1s} + e_k = h\omega_1 \]

\[E_{1s} + e_k = h\omega = h\omega_1 - h\omega_2 \]

Certain freedom in the choice of the incident photon energy

Hard X-rays => Bulk sensitivity; Access to buried layers
High pressure and/or temperature
pyrolytic graphite (1 mm) carbon K-edge: 284 eV
Q = 50 nm⁻¹
borosilicate glass (130 µm)
oxygen K-edge: 540 eV
Q = 97 nm\(^{-1}\)
X-ray Raman scattering – Example 1

Microscopic structure of water at elevated P and T

Resistively heated diamond anvil cell

Direct tomography with chemical-bond contrast

Sample of carbon fibre-reinforced silicon carbide

3D map of the sp^2 chemical bonds (different colors represent different carbon bond orientations).

IXS from phonons - I

Relevance of phonons

Superconductivity

Thermal Conductivity

Phase stability

Sound velocities and elasticity
IXS from phonons - II

Vibrational spectroscopy: a short history

Infrared absorption - 1881
W. Abney and E. Festing, R. Phil. Trans. Roy. Soc. 172, 887 (1881)

Brillouin light scattering - 1922

Raman scattering – 1928
C. V. Raman and K. S. Krishnan, Nature 121, 501 (1928)

TDS: Phonon dispersion in Al – 1948
P. Olmer, Acta Cryst. 1 (1948) 57

INS: Phonon dispersion in Al – 1955

IXS: Phonon dispersion in Be – 1987

NIS: Phonon DOS in Fe – 1995
IXS from phonons - III

- Energy transfer:
 \[E_f - E_i = E \quad (0.001 - 1 \text{ eV}) \]
- Momentum transfer:
 \[\vec{k}_f - \vec{k}_i = \vec{Q} \quad (0.0001 - 100 \text{ nm}^{-1}) \]
Brockhouse (1955)

Thermal neutrons:

\[E_i = 25 \text{ meV} \]
\[k_i = 38.5 \text{ nm}^{-1} \]
\[\Delta E/E = 0.01 - 0.1 \]

Burkel, Dorner and Peisl (1987)

Hard X-rays:

\[E_i = 18 \text{ keV} \]
\[k_i = 91.2 \text{ nm}^{-1} \]
\[\Delta E/E \leq 1 \times 10^{-7} \]
IXS from phonons - V

IXS: Scattering kinematics

\[(\vec{k}_f, E_f) \]
\[(\vec{k}_i, E_i) \]
\[Q, E \]
\[d\Omega \]

\[
\begin{align*}
E &= E_i - E_f \\
|Q| &= 2|k_i| \sin(\theta)
\end{align*}
\]

momentum transfer is defined only by scattering angle
Interplay between structure and dynamics on \approx nm length scale
Relaxations on the picosecond time scale
Excess of the VDOS (Boson peak)
Nature of sound propagation and attenuation

$Q = 4\pi/\lambda \cdot \sin(\theta)$
$\Delta E = E_i - E_f$

Disordered systems: Explore new Q-ΔE range
IXS from phonons - VII

Small sample volumes: \(10^{-4} \text{ – } 10^{-5} \text{ mm}^3\)

- (New) materials in very small quantities
- Very high pressures \(> 1\text{Mbar}\)
- Study of surface phenomena
IXS

\[\frac{\partial^2 \sigma}{\partial E \partial \Omega} = r_0^2 \frac{k_1}{k_2} (\vec{e}_1 \cdot \vec{e}_2) f(Q)^2 S(\vec{Q}, E) \]

- no correlation between momentum- and energy transfer
- \(\Delta E/E = 10^{-7} \) to \(10^{-8} \)
- Cross section \(\sim Z^2 \) (for small Q)
- Cross section is dominated by photoelectric absorption \(\sim \lambda^3 Z^4 \)
- no incoherent scattering
- small beams: 100 \(\mu \)m or smaller

INS

\[\frac{\partial^2 \sigma}{\partial E \partial \Omega} = b^2 \frac{k_1}{k_2} S(\vec{Q}, E) \]

- strong correlation between momentum- and energy transfer
- \(\Delta E/E = 10^{-1} \) to \(10^{-2} \)
- Cross section \(\sim b^2 \)
- Weak absorption => multiple scattering
- incoherent scattering contributions
- large beams: several cm
IXS from phonons - XI

Phonon dispersion and phonon density of states

- **single crystals**
 - triple axis: (very) time consuming
 - time of flight: not available for X-rays

- **polycrystalline materials**
 - reasonably time efficient
 - limited information content
Doping dependence in SmFeAsO$_{1-x}$F$_y$

M. Le Tacon et al.; Phys. Rev. B 80, 220504

e-ph coupling in α-U

S. Raymond et al.; PRL 107, 136401
IXS from phonons – functional materials

Piezoelectrics PbZr$_{1-x}$Ti$_x$O$_3

J. Hlinka et al.; PRB 83, 040101(R)

Skutterudites

M.M. Koza et al.; PRB 84, 014306

InN thin film lattice dynamics

J. Serrano et al.; PRL 106, 205501
Sound velocities in Earth’s core

\[V_p = 3.00 \rho - 6977 \]
\[V_p = 1.82 \rho - 4169 \]
\[V_p = 1.89 \rho - 8505 \]
\[V_p = 0.94 \rho - 1466 \]
\[V_c = 1.67 \rho - 3285 \]
\[V_c = 1.07 \rho - 1392 \]

J. Badro et al.; Earth Plan. Science Lett. 98, 085501

Elastic anisotropy in Mg\textsubscript{83}Fe\textsubscript{0.17}O

D. Antonangeli et al.; Science 331, 64
Instrumentation for IXS - I

$\Delta E/E = 10^{-4}$ to 10^{-5}

$\vec{Q} = \vec{K}_{\text{out}} - \vec{K}_{\text{in}}$

$R = 1$ or 2 m

Si (Ge) $(333, 440, 551, \ldots)$ crystals

Bragg angles $\theta_B: 65^\circ - 90^\circ$

$\Delta E = 0.15$ – 2 eV
Instrumentation for IXS - II

Crystal analysers

Anodic Bonded Elastically Bent Analyzers
- medium energy resolution
- Very thin wafers (Si)
- Curvature radius 1 and 2 m
- Energy compensation algorithm

Diced Analyzers
- very high energy resolution
- cube size 0.8 mm x 0.8 mm x 3 mm
- Curvature radius 1, 2, 6.5 m
- Energy compensation algorithm

In-house R&D: Roberto Verbeni et al; J. Synchrotron Rad. 16, 469 (2009)
Instrumentation for IXS - III

ID20 @ ESRF

spectrometers monitoring monochromators focusing

lateral view
Instrumentation for IXS - IV

RIXS Spectrometer (ID20 - EH2)

Scan of both incident and scattered energy

5 bent or diced analysers
ΔE down to 25 meV
High flux and/or several q’s

1x5 Maxipix Detectors
55 μm pixel size
Energy compensation algorithm
Background removal
Instrumentation for IXS - V

X-ray Raman Spectrometer ID20 - EH3

Scan of incident energy

72 analysers
$\Delta E: 0.4 - 1.5$ eV

6x1 Maxipix Detectors
55 μm pixel size

3 moduli in the vert. plane
3 moduli in the horiz. plane

sample
KB mirrors
Instrumentation for IXS - VI

IXS set-up on ID28 at ESRF

Monochromator:
Si(n,n,n), $\theta_B = 89.98^\circ$
$n=7-13$
λ_1 tunable

Analyser:
Si(n,n,n), $\theta_B = 89.98^\circ$
$n=7-13$
λ_2 constant

$Q = \frac{4\pi}{\lambda \cdot \sin(\theta)}$

$\lambda = 2 \cdot d(T) \cdot \sin \theta_B$

$\frac{\Delta d}{d} = \frac{\Delta E}{E} = -\alpha(T) \cdot \Delta T$

$\alpha = 2.58 \cdot 10^{-6} \text{ 1/K at room temperature}$
Instrumentation for IXS - VII

ID28 @ ESRF

9- analyser crystal spectrometer

<table>
<thead>
<tr>
<th>Reflection</th>
<th>E_{inc} [keV]</th>
<th>ΔE [meV]</th>
<th>Q range [nm(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8 8 8)</td>
<td>15.816</td>
<td>6</td>
<td>2 - 73</td>
</tr>
<tr>
<td>(9 9 9)</td>
<td>17.794</td>
<td>3.0</td>
<td>1.5 - 82</td>
</tr>
<tr>
<td>(12 12 12)</td>
<td>23.725</td>
<td>1.3</td>
<td>0.7 - 100</td>
</tr>
</tbody>
</table>

Spot size on sample: 270 x 60 μm\(^2\) -> 14 x 8 μm\(^2\) (H x V, FWHM)
Further reading

• W. Schülke; *Electron dynamics by inelastic x-ray scattering*, Oxford University Press (2007)

• J.P. Rueff and A. Shukla; Rev. Mod. Physics 82, 847 (2010) *Inelastic x-ray scattering by electronic excitations under high pressure*

• L.J.P. Ament et al.; Rev. Mod. Physics 83, 705 (2011) *Resonant inelastic x-ray scattering studies of elementary excitations*
