Structural and functional analysis of SoPIP2;1 add insights into plant aquaporin gating

Anna Alfredsson¹, Maria Nyblom², Yi Wang³, Mikael Ekvall¹, Karin Hallgren¹, Kristina Hedfalk¹, Emad Tajkhorshid³, Richard Neutze¹, Susanna Törnroth-Horsefield¹

The aquaporin SoPIP2;1

- Aquaporins allow water to pass through membranes.
- Aquaporins exist in all types of organisms: bacteria, archae and eukaryotes.
- Maintaining the turgor pressure in plant cells requires that the water flux can
- be regulated in response to water availability [fig. 1]. SoPIP2; 1 is a regulated aquaporin. It is the most abundant protein in spinach leaves plasma membranes and is functional as a tetramer.
 - Drought leads to channel closing upon dephosphorylation of Ser 115 and Ser 274.
 - When flooding occurs, the channel closes due to protonation of a conserved histidine.

Crystal structures of phosphomimicing mutants show rearrangement in the Nterminus, but the channel remains closed

- The mutation of Ser 115 to Glu disrupts the metal ion binding site, which releases the Nterminus and helix 1 can extend a further half turn into the cytoplasm [fig 3].
- · Loop D still remains in its closed conformation, anchored to loop B but the interactions are altered.
- The S274E mutant structure binds Cd²⁺ and looks essentially the same as the closed wildtype structure.
- The closed conformation of the mutants were confirmed with water transportation assays in proteoliposomes.
- The glutamic acid residue does not seem to fully mimic the phosphorylated state. A real phosphoserine would give two negative charges instead of one, and probably release loop D.

Fig 3. The S115E mutation (green) disrupts the metal ion binding site and the N-terminus is rearranged compared to the closed structure of the wild-type (dark grey).

Crystallographic data			
Structure	S115E	S274E	S115E:S274E
Resolution (Å)	43.44-2.30	34.86-2.95	20.0-2.05
Space group	14	14	14
Completeness (%)	99.9	99.3	99.9
R _{sym} (%)	12.9	15.5	8.4
R-factor (%)	16.5	19.6	15.9
R _{free} (%)	19.3	23.0	18.1

Ν

Fig 2. Overlay of all structures. Dark grey=wildtype closed, light grey= wildtype open, green=S115E, dark blue=S274E, light blue=S115E;S274E.

Fig5. Ser 188 (green) sits on a central position in loop D and may contribute to regulation.

Previous structures proposed mechanism for regulation

- Crystallized in both closed (2.1 Å) and open (3.9 Å) conformation.
- A Cd²⁺ ion is bound in the closed structure, which is thought to be Ca^{2+} in vivo.
 - The ion coordinates a network of ionic and hydrogen bonds which anchors loop D to the Nterminus. Phosphorylation of Ser 115 disturbs this network and release loop D.
 - Residues in loop D create a hydrophobic plug that blocks the pore. Unphosphorylated Ser 274 would cause a steric clash with the hydrophobic plug if the channel tried to open.
 - In this work, phosphomimicing mutants with Ser 115 and Ser 274 replaced by glutamic acid were created to investigate regulation further.

Hypothesis for complete opening of the channel upon phosphorylation of Ser 115

- The open structure [fig 4b] showed an extension on helix 5 compared to the closed structure [fig 4a].
- The S115E mutant is extended on helix 1 [fig 4c].
- We speculate that the structure of SoPIP2;1 phosphorylated at Ser 115 would show both movements [fig 4d].

Fig 4, Cartoon showing the hypothesis for the opening mechanism. a) Wild-type closed, b) Wild-type open, c)S115E d)Hypothetical model of SoPIP2;1 with S115 phosphorylated.

Phosphorylation of Ser 188 may also be involved in regulation

- Ser 188 is part of an extensive H-bond within loop D. Phosphorylation at this site may cause this to break down and loop D to swing open [fig 5].
- Ser 188 sits within a protein kinase C phosphorylation site, just like Ser 274.
- Water transportation assays in liposomes showed a significantly higher water permeability for the S188E mutant compared to wildtype.
- Molecular Dynamics simulations indicated that phosphorylated \$188 interacts with the Cterminus, causing the channel to open.

