Carbon nanotubes interaction with macrophages: chemical imaging by synchrotron X-ray fluorescence microscopy

C. Bussy ^{1,2}, J. Cambedouzou¹, S. Lanone², E. Leccia¹, M. Pinault³, M. Mayne-l'Hermite³, M. Cotte⁴, J. Doucet¹, J. Boczkowski², P. Launois¹

¹ Université Paris-Sud, Laboratoire de Physique des Solides, CNRS, Orsay, France

² Université Paris Val de Marne, Institut Mondor de Recherche Biomédicale, Créteil, France

³ CEA-CNRS, Laboratoire Francis Perrin, Gif-sur-Yvette, France

⁴European Synchrotron Radiation Facility, ID21, Grenoble, France

The human health impact associated with carbon nanotubes (CNT) is a topical issue considering their numerous potential applications. Analysis of CNT-cell interactions is needed, but it is an experimental challenge due in particular to the low contrast of carbon-based nanomaterials in biological environment. We show that such interactions can be well studied using synchrotron-based micro X-ray fluorescence [1], used here for the first time for CNT.

Experiments have been performed on murine macrophages exposed to single-walled or multiwalled CNT, the choice of macrophage cells being dictated by their crucial role in inflammation and respiratory responses to exogenous agents. Investigating chemical element distributions allows one: (i) to image nanotube localization within a cell, with a spatial resolution m, by imaging the catalyst metal particles bound to nanotubes, (ii) toµof 1 detect chemical modifications of the cell after CNT internalization. An excess of calcium is detected in exposed cells. Pharmacological assays with calcium antagonists further demonstrate that calcium plays a key role in the cytotoxicity and the inflammation induced by exposure to CNT. These outcomes show the importance of a calcium pathway response in CNT toxicity.

[1] C. Bussy et al., Nano Letters 8 (9), 2659 (2008)