Field induced phase transition in $\text{Ca}_2\text{FeReO}_6$ double perovskite
an XMCD study in 30T pulsed magnetic field

Marcin Sikora

Faculty of Physics and Applied Computer Science
Department of Solid State Physics
X-ray Magnetic Circular Dichroism

Difference in the spectral shape of absorption spectra acquired at opposite relative orientation of photon helicity and sample magnetization

Proportional to the difference in the spin-up and spin-down DOS above E_F

Element selective probe of localized magnetic moments

$$\Delta \mu = \mu^+ - \mu^-$$
XMCD magnetometry & imaging

Assuming no change in the spectral shape element specific $M(B,P,T)$ profiles can be measured

High resolution, element specific imaging of magnetic domains

Sum Rules

B.T.Thole et al., PRL 68 (1992) 1943
P.Carra et al., PRL 70 (1993) 694

\[
L_z = -\frac{4}{3} \cdot n \cdot \frac{\int (\Delta \mu) dE}{\int (\mu_0) dE} \quad \frac{L_3 + L_2}{L_3 + L_2}
\]

\[
S_z = -n \cdot \frac{\int (\Delta \mu) dE - 2 \int (\Delta \mu) dE}{\int (\mu_0) dE} \quad \frac{L_3}{L_3 + L_2}
\]

where \(n \) denotes the number of holes in the final states

Full spectra necessary at the energy step \(\sim \) lifetime broadening
Sum Rules for Re $L_{2,3}$-edges

$$\frac{m_L}{m_S} \approx \frac{L_z}{2S_z} \sim \frac{1}{3}$$

- Unoccupied d-like final states with...
- Pure spin polarisation
- Pure orbital polarisation

$T=10K, B=2T$
High magnetocrystalline anisotropy → high saturation magnetization and coercive field

Pulsed magnetic field generation

High, steady field magnets are huge and very expensive. Max. at SR facility: 17T at Spring-8.

Higher field may be generated at low cost using pulsed technique. Max. at SR facility: 40T at Spring-8, 30T at ESRF.
Portable pulsed field setup at ESRF

High duty cycle minicoil

- monolithic
- slit coil

Cooling surface

C = 1 mF L = 20 \mu H
U = 2650 V I = 13 000 A

Duty cycle: $1 \cdot 10^{-4}$
B = 30 (38) T
rep. rate: 6/min
at working T: 120K

Portable pulsed field setup at ESRF

A: base
B: window block
C: vacuum shroud
D: coil cup
E: chimney
F: sample cryostat
G: sample holder

Continous flow sample cryostat

He in

He out

Operating temperature 5–300K

Pulsed fields at ED beamline

<table>
<thead>
<tr>
<th>Beamline type</th>
<th>Monochromatic</th>
<th>Energy dispersive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular polarization</td>
<td>ID, QWP</td>
<td>QWP</td>
</tr>
<tr>
<td>Spectral distortions</td>
<td>Sensitive for highly non-homogenous samples only</td>
<td>Sensitive to beam motions, very sensitive for non-homogenous samples</td>
</tr>
<tr>
<td>sample or beam related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection techniques</td>
<td>Transmission, fluorescence, TEY</td>
<td>Transmission only?</td>
</tr>
<tr>
<td>Systematic errors</td>
<td>higher</td>
<td>low</td>
</tr>
<tr>
<td>due to ring current decay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of pulses per spectrum</td>
<td>at least 50</td>
<td>1</td>
</tr>
</tbody>
</table>
Data treatment 1

10K, 30T
LCP

Re L_3

VARIATION WITHOUT GIVEN SCAN

NORMALIZED INTEGRAL OF GIVEN SCAN

MAXIMUM / MINIMUM IN THE ENTIRE SCAN RANGE
Data treatment 2

XAS

10K, 30T
LCP

Re L_3

XMCD

VARIATION WITHOUT GIVEN SCAN

NORMALIZED INTEGRAL OF GIVEN SCAN

MAXIMUM / MINIMUM IN THE ENTIRE SCAN RANGE
Left & right CP comparison
Systematic error
Double perovskites: $A_2BB’O_6$

- $B’: \text{Mo, Re, W, Os}$
- $B: \text{Fe, Cr, Mn}$

Half doped B site: regularly stacked BO_6 and $B’O_6$ octahedra

Ferrimagnetic, metallic double-exchange-like interaction
Magnetoresistive double perovskites

Ferrimagnetic half metals
100% spin polarization

\(T_C \approx 400-750\text{K} \)

Ca\(_2\)FeReO\(_6\) reveals:

High coercivity at low \(T \)

Magnetoresistive double perovskites

Ferrimagnetic half metals
100% spin polarization

$T_C \sim 400$-$750K$

$\text{Sr}_2\text{FeReO}_6$

DOS (states/eV/f.u.)

Energy (eV)

Ca$_2$FeReO$_6$ reveals:

- **High coercivity at low T**
- **Large magnetoresistance**
- **Phase coexistence at $T<150K$**

Phase transition in Ca$_2$FeReO$_6$

below T_S

above T_S
Low and high field XMCD

L_3 shape altered by B & T

L_2 shape unchanged
Stronger $L_3 \rightarrow$ higher absolute m_L/m_S

Similar increase of L_2 (XMCD integral) $\rightarrow m_L$ follows bulk magnetization
m_L/m_S evolution over B-T space

Within statistical error margin

Unique m_L/m_S expected for given electronic configuration

Relative increase of the absolute m_L/m_S ratio in ‘metallic’ phase

$T<100K$
$\textbf{$m_L/m_S$ evolution}$
Induced by magn. field
\rightarrow phase coexistence

$T>200K$
\textbf{constant m_L/m_S} \rightarrow single phase
Re & bulk magnetization evolution

$M(B)$ profiles normalized at 30T
→ collinear magn. $T > 200$K
→ excess of Re magnetization at low fields for $T < 150$K

$M(T)$ normalized at high T
→ excess of Re magnetization at low temperatures & fields

May be explained by charge redistribution
→ increase in Re population at low T & B
m_L & bulk magnetization evolution

$M(B)$ profiles normalized at 30T
\rightarrow collinear magn. $T > 200K$
\rightarrow excess of Re magnetization at low fields for $T < 150K$

$M(T)$ normalized at high T
\rightarrow excess of Re magnetization at low temperatures & fields

... or by non-collinear alignment
\rightarrow decrease of projected M_{Fe}
Conclusions and perspectives

Re $L_{2,3}$ XMCD spectra acquired up to 30T over wide T range: 10-250K

Field induced phase transition observed in $\text{Ca}_2\text{FeReO}_6$, confirmed phase coexistence

Phase transition associated with charge redistribution and ...

... non-collinear alignment in insulating (low B & T) phase

XMCD spectroscopy successfully combined with pulsed generation of magnetic field

A number of 20-50 pulses per spectrum is sufficient

Reliable but complex setup (quick reparation time)

Automatic data selection (correction) techniques to be developed
With help from

O. Mathon, P. van der Linden, S. Pascarelli, C. Strohm, C. Detlefs
ESRF

J. Michalik, Cz. Kapusta, L. Walach
AGH University, Krakow, Poland

J.M. de Teresa, J. Blasco, R. Cordoba
Universidad de Zaragoza, Spain

T. Neisius
Universite de Marseille, France

J. Headspith
SFTC, Daresbury, UK

J. Evans
Southampton University, UK