

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Field induced phase transition in Ca₂FeReO₆ double perovskite an XMCD study in 30T pulsed magnetic field

Marcin Sikora

Faculty of Physics and Applied Computer Science Department of Solid State Physics

X-ray Magnetic Circular Dichroism

Difference in the spectral shape of absorption spectra acquired at opposite relative orientation of photon helicity and sample magnetization

Proportional to the difference in the spin-up and spin-down DOS above E_F

Element selective probe of localized magnetic moments

XMCD magnetometry & imaging

Assuming no change in the spectral shape element specific *M*(*B*,*P*,*T*) profiles can be measured

High resolution, element specific imaging of magnetic domains

B.T.Thole et al., PRL 68 (1992) 1943 P.Carra et al., PRL 70 (1993) 694

where **n** denotes the number of holes in the final states

Full spectra necessary at the energy step ~ lifetime broadening

Sum Rules for Re $L_{2,3}$ -edges

High magnetocrystalline anizotropy \rightarrow high saturation magnetization and coercive field

J.M.deTeresa et al., Appl. Phys. Lett. 90, 252514 (2007)

Pulsed magnetic field generation

High, steady field magnets are huge and very expensive Max. at SR facility: 17T at Spring-8

Higher field may be generated at low cost using pulsed technique Max. at SR facility: 40T at Spring-8 30T at ESRF

Portable pulsed field setup at ESRF

P. J. E. M. van der Linden et al., Rev. Sci. Inst. 79, 075104 (2008)

Portable pulsed field setup at ESRF

P. J. E. M. van der Linden et al., Rev. Sci. Inst. 79, 075104 (2008)

Pulsed fields at ED beamline

Beamline type	Monochromatic	Energy dispersive
Circular polarization	ID, QWP	QWP
Spectral distortions sample or beam related	Sensitive for highly non-homogenous samples only	Sensitive to beam motions, very sensitive for non- homogenous samples
Detection techniques	Transmission, fluorescence, TEY	Transmission only?
Systematic errors due to ring current decay	higher	low
Number of pulses per spectrum	at least 50	1

Data treatment 2

Data treatment 3

Double perovskites: A2BB'O6

Half doped B site: regularly stacked BO₆ and B'O₆ octahedra

Ferrimagnetic, metallic double-exchange-like interaction

Magnetoresistive double perovskites

Ferrimagnetic half metals 100% spin polarization

 $T_{C} \sim 400-750 {\rm K}$

J.M. De Teresa et al., Phys. Rev. B 69, 144401 (2004)

Ca₂FeReO₆ reveals:

High coercivity at low T

Magnetoresistive double perovskites

Phase transition in Ca₂FeReO₆

H. Kato et al., Phys. Rev. B 65, 144404 (2002) K. Oikawa et al., J. Phys. Soc. Japan 72, 1401 (2003)

Low and high field XMCD

m_L/m_s evolution

m_L/m_s evolution over *B*-*T* space

Re & bulk magnetization evolution

M(B) profiles normalized at 30T

- \rightarrow collinear magn. *T* > 200K
- \rightarrow excess of Re magnetization at low fields for T <150K

M(T) normalized at high T

 \rightarrow excess of Re magnetization at low temperatures & fields

May be explained by charge redistribution \rightarrow increase in Re population at low T & Blow T & B m_{Re} m_{Re} m_{Fe} m_{Fe} m_{bulk} m_{Fe}

m_L & bulk magnetization evolution

M(B) profiles normalized at 30T

- \rightarrow collinear magn. T > 200K
- \rightarrow excess of Re magnetization at low fields for T <150K

M(T) normalized at high T

→ excess of Re magnetization at low temperatures & fields

Conclusions and perspectives

Re $L_{2,3}$ XMCD spectra acquired up to 30T over wide *T* range: 10-250K

Field induced phase transition observed in Ca₂FeReO₆, confirmed phase coexistence

Phase transition associated with charge redistribution and ...

... non-colinear allignment in insulating (low B & T) phase

XMCD spectroscopy succesfully combined with pulsed generation of magnetic field

A number of 20-50 pulses per spectrum is sufficient

Reliable but complex setup (quick reparation time)

Automatic data selection (correction) techniques to be developed

O. Mathon, P. van der Linden, S. Pascarelli, C. Strohm, C. Detlefs **ESRF**

J. Michalik, Cz. Kapusta, L. Walach *AGH University, Krakow, Poland*

J.M. de Teresa, J. Blasco, R. Cordoba Universidad de Zaragoza, Spain

T. Neisius *Universite de Marseille, France*

J. Headspith **SFTC, Daresbury, UK**

J. Evans *Southampton University, UK*