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MENU

• Geometrical limitations for nanofocusing ESRF beams 
with ideal mirrors

• Focusing with ID24UP setup:
• Elliptical Horizontal Mirror
• Bragg Polychromator
• Laue Polychromator

• Problems
• Crystal surface shape

• Conclusions
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Introduction: How to obtain nanospots

Some choices/boundaries:

•N=1

•p>> to increase demagnification

•Sorce size ~10 microns

Some implications:

•No perfect imaging is possible 
for N=1 (The Abbé sine 
condition cannot be  fulfilled for 
a single reflector)

•10 microns -> 1 nm =>
Demagnification 104. 
Q: Is still possible? What are 
the geometrical limits?
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Perfect point to point reflector

p q

•If we impose specular reflection, the surface that produces a point-to-point focus is 
called Cartesian surface.
•A Cartesian surface must satisfy the equations representing a conic of revolution
•“Circular” approximations of these surfaces relax some properties: Toroid (not 
point-to-point focus), sphere (astigmatic), etc. Surface errors (figure, slope, 
roughness) must be taken into account.  
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ESRF source sizes

• Synchrotron sources are simple
• They can be calculated exactly
• Very good Gaussian 

approximation (Size distribution 
is Gaussian)

• ESRF beam sizes do not 
improve significatively with the 
Upgrade
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Evolution of the beam RMS THEORY
p+q: Present:40m, Upgrade:150
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theory (naïve), i.e., 
spot size limited by geometric demagnification



7

Evolution of the FULL beam (30μrad) 
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Evolution of the beam RMS
ACCEPTED by L=20cm
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Evolution of the beam INTENSITY
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ID24 upgrade

HFM-S
HFM-L
29.5 m

VFM-S
VFM-L
33 mPLC-L

52.5 m

PLC-S
64.2 m

Detector
68 m

3rd refocusing mirror
64.55 m
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ELLIPTICAL HFM  M=2950/100~30
• Theory  13.6 μm RMS 31.9 μm FWHM
• Ray tracing (uncorrected) 13.4 μm RMS 28±3 μm FWHM
• Ray tracing (corrected) 10.3 μm RMS 21±2 μm FWHM
• Divergence: 1.2±0.1 mrad FWHM  (Theory 0.83 mrad)

Uncorrected
Phase Space

Corrected (-1.8cm)
Phase Space
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Beam evolution [-5,5] cm
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Correction
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Slope errors 
(0.45 μrad RMS as for VFM-SESO-2004)

• NO MAIN EFFECT WITH VERY 
GOOD MIRRORS

• 10.3 μm RMS; 21±2 μm FWHM
• 1.2±0.1 mrad FWHM
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PROFILE SLOPE DISTRIBUTIONS

POWER 
SPECTRAL DENSITY

Slope Error RMS [μrad]

Spatial frequency [mm-1]
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polychromator

• BRAGG
• P=33.7 m q=0.2-2 m => 

M=168.5-16.5
• E=5-27 keV 

• LAUE
• P=22 m q=0.2-2 m => 

M=110-11
• E=5-50 keV 
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BRAGG CYLINDRICAL POLYCHROMATOR
θB=3 deg; M=200 Spot size (microns) vs M 

(Errors=3sigma)
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Ellipse
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Elliptical crystal
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Calculated (RT)

RMS (all rays)
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Transmission Crystal Polychromator 
Laue FLAT POLYCHROMATOR

(Matsushita)
Q: How big is this point?
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Laue FLAT Polychromator
polychromatic PSEUDO-focusing

Monochromatic divergence (Classical Electrodynamics)

t<<
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Laue FLAT MONOCHROMATOR
(Dynamic Theory of Diffraction)

t

Eo Eo

Eo

G. Borrmann, Beitr. Phys. Chem. 20. Jahrhunderts, Vieweg & Sohn, 
Braunschweig, 262–282 (1959)
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Bent crystals: multifocus problem

1) Monochromatic geometrical focusing Where these focii are located?

How big they are? 

How they combine?

How to optimize them?

3) Monochromatic focusing of Borrmann triangle

4) Polychromatic focusing of Borrmann triangle

2) Polychromatic geometrical focusing
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Transmission Lenses

SPHERICAL HYPERBOLIC
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Hyperbolic crystals

Hrdy has shown that for focusing x-rays using a Laue crystal with atomic planes 
perpendicular to the crystal surface, the crystal surface must follow an hyperbola.
Hrdy, J., 1990. POLYCHROMATIC FOCUSING OF X-RAYS IN LAUE-CASE DIFFRACTION  - (HYPERBOLICAL 

SPECTROGRAPH). Czechoslovak Journal of Physics 40, 1086-1090.
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Ray tracing with hyperbolic crystals
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Conic equation
2 2 2

0 1 2 3 4 5 6 7 8 9 0c x c y c z c xy c yz c xz c x c y c z c+ + + + + + + + + =

p=2790, q=120 and θB=14.3deg. 

Ellipse2 (Hyperbola2) is obtained from 
ellipse1 (Ellipse1) by symmetry with respect 
to the (x,z) plane (i.e., y->-y). 
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Conic surfaces

The Y dimension has been exaggerated to recognize the conic.

Sphere

Ellipse-1
Ellipse-2

Hyperbola-1

Hyperbola-2

Y [cm]

Z 
[c

m
]
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Hyperbolic profile
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Z 
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SPHERE

HYPERBOLA

DIFFERENCE 40 μm
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Monochromatic focusing: 
Elimination of aberrations using an hyperbolic crystal

• the hyperbolic crystal works better in terms of focusing an ideal beam:
• monochromatic (E=8000eV) point source
• with a Si111 100μm thick bent symmetrical-Laue crystal.

•The rays  (“weighted with rays”) are not focused with the plane crystal, and are focused with all the other crystals. The best 
focalization is for hyperbola1, as expected, with profile with about 2 μm. 

•The intensity is very small in all cases, due to the fact of the very small angular acceptance of the crystal (we use a 
monochromatic source)

•The intensity given by all bent crystals is much smaller than for the flat case. This can be understood because the convexity
of the crystal increases the dispersion of the beam along the crystal surface, thus reducing the transmitivity. 

•Note that in all bent cases, the spot size (weighted with intensity) is smaller than 3 μm. 

•Both hyperbola-1 and hyperbola2 give similar spot size, but the correct one is hyperbola1
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Spot profiles

PLANE

SPHERE

ELLIPSE-1 ELLIPSE-2

HYPERBOLA-1 HYPERBOLA-2
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Polychromatic focusing

SPHERE

ELLIPSE-1

HYPERBOLA-1

A polychromator with hyperbolic 
shape produces an ideal focus, 
point-to-point focusing and no 
defocus at all. It is a “perfect” 
system (remember that we use 
here a point source and the 
beam does not penetrate in the 
crystal). 
If we approximate the hyperbola 
by a sphere (or ellipse) there is a 
defocus of about -10 cm and the 
best spot (remember we use a 
point source) is larger than 100 
μm (RMS).
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Spot broadening because of crystal thickness

• I assume here the hypothesis that the 
maximum cross section of the diffracting 
beam cannot be larger than the 
incoherent sum of the beams diffracted by 
different crystal surfaces. 

• These surfaces are produced by 
translating the initial crystal surface (with 
pole at (0,0,0) ) along the z (vertical) axis 
an amount , with t the crystal thickness. 

• Therefore, for computing the spot size it 
will be enough to calculate the spot of the 
two limiting surfaces at 0 and t. The “real” 
spot will fill all the space between the 
spots produced by these two surfaces. 
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Spots produced by the two limiting surfaces

t=10 μm t=200 μm

~6 μm ~100 μm
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Evolution of the “extreme beams”
The fact that the 
diffraction takes place in 
a finite volume inside the 
crystal, implies that the 
crystal thickness is the 
limiting parameter when 
trying to focus x-ray 
beams even if all 
aberrations are 
corrected using 
hyperbolic crystal shape.

We neglected: 

•effects of absorption 
inside the crystal 

•possible focusing of the 
beam outgoing from the 
Borrmann triangle
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Conclusions
• The ESRF source cannot be arbitrarily demagnified: 

problems will start with M>100

• The HFM, even if perfect, degrades the phase space. This may affect the polychromator 
performance. Slope errors should be kept less than 0.5 um RMS with care on the distribution 
of the low frequencies (figure errors). A small astigmatism may be present.

• For Bragg polychromators, use elliptical crystals (well known: Fontaine, San Miguel, 
Pascarelli, ID24)

• For Laue polychromatiors, one must use crystals with hyperbolic shape (spherical or 
elliptical approximations are not good)

• Spot size is influenced by geometry (shape), polychromatic and monochromatic focalization 
and crystal thickness. To reduce its effect, two solutions (of a combination of them)

• Use very thin crystals
• Focus the Bormann triangle. This is possible, but one should take into account that 

• i) the focusing of the Borrmann triangle must be at the same place of the geometric focusing
• ii) all energies transmitted by the monochromator must be focused very close to the geometric 

focus (polychromatic analysis)
• iii) the correct crystal curvature (hyperbolic) should be taken into account for correctly 

calculating the diffraction pattern 
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Evolution of the beam FWHM
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