High Pressure Studies

using EDXAS

Alfonso San Miguel

University of Lyon and CNRS

"The beamline ID24 at ESRF for energy dispersive x-ray absorption spectroscopy" M. Hagelstein, A. San Miguel, T. Ressler, A. Fontaine and J. Goulon J. de Physique IV, 7, C2, *C2-303* (1997).

XAFS at high pressure

High pressure XAS

S SEVERAL CNRS

Laboratoire de Physique de la Matière Condensée et Nanostructures Université Lyon-I

ID24: an Energy Dispersive Optics on an Ondulator

Polychromator vessel

Bragg Bender

A. SAN MIGUEL, M. HAGELSTEIN, J. BORREL, G. MAROT AND M. RENIER Journal of Synchrotron Radiation **5**, 1396-1397 (1998)

J. PELLICER PORRES, A. SAN MIGUEL and A. FONTAINE Journal of Synchrotron Radiation 5, 1250-1257 (1998)

~ 1995 ~ First complete High Pressure set-up @ ID24

1995 : The fighters at that hard time !

Some succesful histories using HP@EDXAS

- ZnTe-II: the first high pressure crystal structure determination combining EXAFS and diffraction (LURE)
- A new phase transition in bromine (ID24)
- The compressibility of III-VI layered semiconductors (ID24)
- Exotic phase transitions in groupe-14 clathrates (ID24)

1. ZnTe-II the first high pressure crystal structure determination combining EXAFS and diffraction

ZnTe at the Zn K-edge under pressure

... at a time where X-ray Rietveld refinement in high pressure phases was not existing

Cinnabar ZnTe

DEXAFS

ZnTe-II (11.7 GPa) 4-fold coordinated cinnabar (hexagonal) structure u = v = 0.474c/a = 2.272

A. San Miguel, A. Polian, M. Gauthier and J.P. Itié, Phys. Rev. B, 48, 8683 (1993).

2

A new phase transition in bromine

Halogens: high pressure dissociation of molecular crystals

XAS of Bromine at Megabar pressures

A. San-Miguel, H. Libotte, J.P. Gaspard M. Gauthier, J.P. Itie And A. Polian, Eur. Phys. J. B 17, 227-233 (2000)

EXAFS

Bromine @ Br K-edge EXAFS

10

Bromine intra-molecular distance: it changes!

• *Phase transition with a loss of molecular caracter.*

A. San Miguel, H. Libotte, J.P. Gaspard, M. Gauthier, G. Aquilanti, S. Pascarelli Phys. Rev. Lett. **99**, 015501 (2007)

The compressibility of

III-VI layered semiconductors

Structure of III-VI semiconductors (GaS, GaSe, InSe, GaTe)

2D Semi-conductors : GaTe

Particularity: Oriented Ga-Ga bond in the layers

XANES at the Ga k-edge of GaTe single crystal as a function of pressure (E // c and E \perp c)

Dichroic signal at the Ga k-edge of GaTe single crystal as a function of pressure (E // c and E \perp c)

Consistency between 3 different EXAFS analysis for the Ga-Ga distance.

Result of the EXAFS analysis combining data from both polarisation

Anisotropy of the compressibitlity in III-VI semiconductors

4

Exotic phase transitions in nanomaterials :

group-14 clathrates

Type-I Clathrates of C(?), Si, Ge, Sn

Group-14
clathrates
$$Y = \begin{cases} C(?), Si, Ge, Sn \\ +Ag, Au, Ni, Cu, As, Al, ... \\ M = Na, K, Rb, Ba, Sr, I, ... \end{cases}$$

Two « exotic » isostructural phase transitions in group-14 clathrates Ba₈Si₄₆

1. Loss of "guest" Raman modes 2. Homothetic volume collapse

T. Kume et al. PRL 90 155503 (2003).

A. San Miguel et al., Phys. Rev. B. 65 (2002)

First transition in Ba₈Si₄₆

DXANES @ ID24

A. San Miguel, , A. Merlen, P. Toulemonde, T. Kume, S. Le Floch, A. Aouizerat, S. Pascarelli, G. Aquilanti, O. Mathon, T. Le Bihan, J.P. Itié, S. Yamanaka et al., Europhys. Lett. **69** 556 (2005)

Have a look to the framework structure: DEXAFS experiments are possible using DAC at the Ge K-edge

Fig. 2.1 – Schéma du type de cellule à enclumes de diamant utilisée pour les expériences à l'ESRF.

Fig. 2.2 – Taux de transmission des rayons X en fonction de leur énergie à travers 4 mm de diamant.

Combined X-ray diffraction and X-ray absorption at ID24 - ESRF

Diamond anvil cell

MAR : detector for X-ray diffraction

CCD – position sensitive detector

High-pressure XRD @ ID24

EXAFS Fit

2 GPa

15 GPa

31 GPa

Ba₈Si₃₉Ge₇ at the Ge K-edge

X-Ray Absorption results on Ba₈Si₃₉Ge₇

All the Ge atoms on 24k sites 1 or 2 Ge-Ge pairs and 4 or 5 Ge-Si pairs

 \Rightarrow Displacement of the Ba atoms from the cages center

 \Rightarrow Decreasing of the mean-square disorder on the path Ge-Ba

Hybridization between Ba and Ge atoms at P ~ 15 GPa

=> Change in the electronic structure of the Ge atoms

DAC with fluorescence detection at ID24

Many thanks to ...

- J.P. Itié
- A. Fontaine
- M. Hagelstein
- S. Pascarelli
- G. Aquilanti
- O. Mathon
- G. Marot
- M. Renier
- S. Pasternak
- J. Morel

- A. Polian
- M. Gauthier
- J. Pellicer Porres
- A. Segura
- P. Mélinon
- D. Machon
- V. Pischedda
- S. Le Floch
- H. Libotte
- J.C. Blancon
- C. Bousige
- H. Feret

PANORAMIX DAC and Pressurization System

The volume collapse transition in group-14 clatrhates

Fukuoka *et al*, J. Solid State Chemistry, **175**, 237 (2003)
Our results

Occupation of the Ge atoms in the different sites as a function of the substitution Open symbols: Fukuoka *et al,* J. Solid State Chemistry, **175**, 237 (2003) Solid symbols: our results

$Ba_8Ge_xSi_{46-x}$ at high pressure

No collapse in Ba₈Si₄₃

Understanding the collapse = Understanding why it is suppressed

H. Shimizu et al., J. Appl. Physics, 101, 063549 (2007)