Bendable crystals in Bragg geometry

Thierry Moreno, François Baudelet, Sylvain Brochet, Sébastien Chagnot, Alberta Congeduti, Mourad Idir, Quingyu Kong, Muriel Thomasset SOLEIL SYNCHROTRON

- Overview of focusing
- Hooke's law + parameters
- ODE beamline description
- Data analysis
- Conclusion

O Image size \rightarrow two factors : source size and mirror defects

$$
\sigma_{\text {IMAGE }}=\left(\sigma_{\text {SOURCE }} \frac{\mathrm{q}}{\mathrm{p}}\right) \otimes(2 \mathrm{q} \varepsilon)
$$

- Radius of curvature

$$
\mathrm{R} \approx \frac{2 \times \mathrm{q}}{\sin (\theta)} \quad\left\{\begin{array}{l}
\text { Long mirrors : } 50 \mu \mathrm{~m}, 5000-1000 \mathrm{~m}, 60 \mathrm{~mm} \\
\text { KB mirrors : } 2 \mu \mathrm{~m}, 150-50 \mathrm{~m}, 8 \mathrm{~mm} \\
\underline{\text { Sil11 crystal at } 7 \mathrm{keV}: 10-8 \mathrm{~m}, 1.5 \mathrm{~mm}}
\end{array}\right.
$$

Overview of focusing

- slope error effect on the focus

Overview of focusing

- slope error effect on focus

Overview of focusing

- slope error shape out of focus

\Rightarrow sinusoidale defects resulting of - polishing defects (mirrors) - thickness and width defects (crystals)

Overview of focusing

- Sinusoidale defects in crystals

Sil11 crystal at $7 \mathrm{keV}\left(\theta=16.41^{\circ}\right)$
Sine defect : $A=1.8 \boldsymbol{\mu m}, \mathrm{D}=\mathbf{8 0} \mathrm{mm}, \mathrm{L}=\mathbf{2 0 0} \mathrm{mm}$

DUMOND Diagrams

The DUMOND Diagram changes according to the position of the detector

O Local crystal curvature effect (Using Takagi-Taupin crystal theory)

Overview of focusing

- Depth penetration length effect

If only absorption

\Rightarrow Focal size limitation for crystals

Hooke's law

- Hooke's law definition

$$
\frac{1}{R(x)}=\frac{12}{\mathrm{Eh}^{3}} \frac{\frac{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}{2}-\frac{\left(\mathrm{C}_{1}-C_{2}\right)}{\mathrm{L}} \mathrm{x}}{\mathrm{~b}(\mathrm{x})}
$$

\Rightarrow elastic deformations
\Rightarrow mechanical beam theory

$$
\frac{1}{100}<\frac{h}{L}<\frac{1}{5}
$$

$$
\begin{aligned}
& \text { Long mirrors, KB : } \frac{1}{20} \\
& \text { Bent crystals : } \frac{1}{100} \approx \text { Plate theory } \rightarrow \text { (FEA verification) }
\end{aligned}
$$

- Curvature
$\frac{1}{R(x)}=\frac{12}{E h^{3}} \frac{\frac{\left(C_{1}+C_{2}\right)}{2}-\frac{\left(C_{1}-C_{2}\right)}{L} x}{b(x)}$

$$
\frac{1}{R(x)}=\frac{y^{\prime \prime}(x)}{\sqrt[3]{1+y^{\prime}(x)^{2}}} \approx y^{\prime \prime}(x)
$$

\Rightarrow evaluation

$$
\begin{aligned}
& \varepsilon=\text { у' }_{\text {нооке }}-\text { у' }_{\text {ELL }} \\
& \rightarrow \sigma=2 \times \varepsilon \times \mathrm{q}
\end{aligned}
$$

- Ellipse representation

$$
\begin{aligned}
& \Rightarrow \text { Polynomial } y_{E L L}=\sum a_{n} x^{n} \\
& \text { with } a_{n}=f(p, q, \theta) \\
& \Rightarrow \text { Numerical }\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)
\end{aligned}
$$

Polynomial representation :
Sil11 ODE crystal
$\mathrm{p}=17.2 \mathrm{~m}, \mathrm{q}=1.2 \mathrm{~m}, \theta=16.41^{\circ}(7 \mathrm{keV})$
LUCIA HFM
spot of $\mathbf{1 0} \mu \mathrm{m}$ FWHM

Hooke's law

- Width side

$$
\frac{1}{R(x)}=\frac{12}{E h^{3}} \frac{\frac{\left(C_{1}+C_{2}\right)}{2}-\frac{\left(C_{1}-C_{2}\right)}{L} x}{b(x)} \quad \begin{aligned}
& \text { shapes } \\
& \text { free : numerical }
\end{aligned} \begin{aligned}
& \left(x_{1}, b_{1}\right) \ldots\left(x_{N}, b_{N}\right) \\
& \text { trapezoidal } \\
& \begin{array}{l}
\text { torpedo }
\end{array} \\
& b(x)=A(1-B x) \rightarrow A \\
& b(x)=A\left(1-B x^{2}\right)
\end{aligned} \rightarrow B
$$

Si111 ODE crystal, $\mathrm{L}=300 \mathrm{~mm}, \mathrm{~h}=1.6 \mathrm{~mm}$ $p=17.2 \mathrm{~m}, \mathrm{q}=1.2 \mathrm{~m}, \theta=16.41^{\circ}(7 \mathrm{keV})$

\Rightarrow Trapezoidal easier to make and to correct
\Rightarrow Torpedo well adapted for bending and thermal cooling because symmetric

Hooke's law

- Change of energy

Si111 ODE crystal, $\mathrm{L}=300 \mathrm{~mm}, \mathrm{~h}=1.6 \mathrm{~mm}$ $\mathrm{p}=17.2 \mathrm{~m}, \mathrm{q}=1.2 \mathrm{~m}$
Triangular width optimized at $7 \mathrm{keV}\left(\theta=16.41^{\circ}\right)$

$E(\mathrm{keV})$	$\theta\left({ }^{\circ}\right)$	C_{1} (N.m)	C_{2} (N.m)
5	23.30	0.2018	0.2077
6	19.24	0.1675	0.1739
7 (opt)	16.41	0.1432	0.1495
10	11.41	0.1000	0.1050

\Rightarrow The RMS slope error is acceptable for a large spectral domain
\Rightarrow The residual slope error shape may structured the Dumond diagram

Hooke's law

O thickness

$$
\frac{1}{R(x)}=\frac{12}{E h^{3}} \frac{2}{b(x)}
$$

\Rightarrow Thickness defects can be corrected with the lateral width

$$
\begin{aligned}
& (h+\Delta h)^{3}(b+\Delta b)=c t e \rightarrow \Delta b=\frac{3 b}{h} \Delta h \quad(h=1.6 \mathrm{~mm}, \mathrm{~b}=30 \mathrm{~mm} \rightarrow \approx 60 \mu \mathrm{~m} / \mu \mathrm{m}) \\
& \text { ss variation }(\pm 2 \mu \mathrm{~m})
\end{aligned}
$$

Thickness variation ($\pm 2 \mu \mathrm{~m}$)

Width variation

ODE EDXAS beamline

- ODE beamline : EDXAS
\Rightarrow X-ray magnetic Circular Dichroism
\Rightarrow Materials under extreme conditions
\Rightarrow Chemistry and time resolved measurements

- Bent crystal

\Rightarrow Adapted to the bending and cooling Difficult to make

\Rightarrow Adapted to the bending
No adapted to the cooling Easy to make

Adapted to the bending ?
Adapted to the cooling Easy to make

\square
Have to be checked by FEA

X-ray measurements

- Zn edge measurement
$\Rightarrow E=9659 \mathrm{eV}, \theta_{0}=11.81^{\circ}, \Delta E=600 \mathrm{eV}$

CCD : 110×72 pix (7 $\mu \mathrm{m} / \mathrm{pix}$)

Equivalent sine defect
$q_{\text {striation }}=1200 \pm 8 \mathrm{~mm}$ $\delta=114 \mu \mathrm{~m}$

$\rightarrow A=100 \mathrm{~nm}, \mathrm{D}=80 \mathrm{~mm}, \varepsilon=5.3 \mu \mathrm{rad}$ RMS
$\Delta \mathrm{x}_{\text {the }}=30 \mu \mathrm{~m}$ FWHM
$\Delta x_{\text {mes }}=45 \mu \mathrm{~m}$ FWHM (factor 1.5)

Data analysis

- Thickness crystal measurement
\Rightarrow Use of a profilometer : the support of the crystal is critical

Thickness reconstruction

Next step : to use a fixed crystal curvature for the profilometer measurement

Data analysis

- Shape of the surface

\Rightarrow The optical shape varies with the Bragg angle
\Rightarrow The optical shape is very sensitive with C_{1} and C_{2}
\Rightarrow Period $=80 \mathrm{~mm}$

Data analysis

- $\mathbf{Z n}$ edge simulations
$\Rightarrow E=9659 \mathrm{eV}, \theta_{0}=11.81^{\circ}, \Delta E=600 \mathrm{eV}$
$\Delta q=-8 \mathrm{~mm}$

$$
\begin{gathered}
\Delta q=0 \mathrm{~mm} \\
\text { at focus }
\end{gathered}
$$

Data analysis

- Comparison experience - theory
$\Rightarrow E=9659 \mathrm{eV}, \theta_{0}=11.81^{\circ}, \Delta E=600 \mathrm{eV}$

Structures out of focus correctly depict through thickness defects

Focal spot size strongly dependent of depth penetration (not yet implemented on the ray tracing)

- Intensity modulation scheme
\Rightarrow Intensity modulation = f(source size, period defects, beam divergence)

\diamond Olivier Mathon, ESRF
\diamond François Polack, Gilles Cauchon and Rachid Belkhou, SOLEIL
\diamond ODE beamline team and Metrology Laboratory team of SOLEIL

Simulations tools

- Ray tracing software SPOTX
\Rightarrow Based on the MonteCarlo method
\Rightarrow Dynamical absorption calculation
\Rightarrow Very fast and well suited for X-ray beamlines simulations
- Surfaces defects
\Rightarrow Function (sinusoidal, ..)
\Rightarrow Random
\Rightarrow Data file : profilometer, interferometer

