First Results from a Dispersive EXAFS beamline at Indus-2 SR facility

S.N. Jha, D. Bhattacharyya, A.K. Poswal, and S.C. Sabharwal Raja Ramanna Centre For Advanced Technology, Indore, India snjha@rrcat.gov.in

2-5 February, 2009, ESRF

- Introduction to Indus SR
- Beamline description
 - Basic working principle
 - Optical layout
 - Design procedure
 - Mechanical Layout
 - Experimental station
- Commissioning results

Schematic view of Indus complex

Indus-2 synchrotron spectrum

Indus-2 Parameter Energy: 2.5 GeV Current: 300mA Field : 1.5 T (BM) Circumference:172.5m Lifetime: 15 Hrs $\lambda_{c} = 1.98 \text{ Å} (6.23 \text{ KeV})$ **Beam size** σx : 0.234mm σy : 0.237 mm **RF** frequency :505.812 MHz

Status of Indus-2

Characteristics of ED XAFS BL at Indus-2

- Source: Bending magnet
- Energy range: 5-20keV
- Resolution: 10⁻⁴
- Band pass: 300ev to 2000eV
- Flux: 10¹² photons/sec/1000eV
- Polychromator: Si(111)
- Detector: CCD(2k x 2k ; pixel: 13.5µ)

Working Principle of EXAFS Beamline

Energ	θο	a	b	c
y (eV)	(deg)	(mm)	(mm)	(mm)
5,000	23.28	10285	1335.5	10198
10,000	11.40	10320	708.1	10296
20,000	5.67	10702	524	10689

Principle of Action:

 Synchrotron Radiation diffracted and is focused on sample by a perfect crystal, bent elliptically such that the sample and the source are at focii of the ellipse. **Transmitted intensity is** detected by a position sensitive CCD detector.

Design Procedure

- Fixed parameters
- Variable geometrical parameters
- Ray tracing : check the performance
- Fixing the specs of optical components
- Simulation of heat load on each optical components
- Mechanical specs of different subsystem
 - » Mirror mount, crystal bender et
- Simulation of radiation dose
- Fixing specs of Hutch

Fixed Parameters

Crystal type	Si (111)
2d Value	6.2709 Å
Source to Crystal Distance (p)	20,000 mm
Detector length (L)	25 mm
Horizontal Beam Divergence (U _m)	1.5 mrad
Vertical Beam Divergence	0.2 mrad

$$\begin{array}{c}
 E_{o} \\
 Sin\theta_{o} = \frac{\lambda}{2d} = \frac{12.398}{2dE_{o}(keV)} \\
 \theta_{o} \\
 p, U_{m}, \theta_{o} \\
 U_{m} = (\frac{l}{p})Sin\theta_{o} \\
 1, \theta_{o}, \Delta E, p \\
 \Delta E = E_{o}lCot\theta_{o}(\frac{1}{R} - \frac{Sin\theta_{o}}{p}) \\
 R \\
 R, p, \theta_{o} \\
 \frac{1}{Sin\theta_{o}} = \frac{R}{2}(\frac{1}{p} + \frac{1}{q}) \\
 l, q, \theta_{o} \\
 U_{m}' = (\frac{l}{q})Sin\theta_{o} \\
 U_{m'}' = \frac{L}{U_{m}'} \\
 P.M. Lee etal, Review Scientific Instrum, 65, 1(1994)$$

Derived Parameters

Photon Energy E _o (eV)	5000	10,000	20,000
Band Pass ΔE (eV)	297	1123	2000
Bragg Angle (θ_0)	23.28°	11.40°	5.67 °
Crystal length l (mm)	75.9	151.8	303.5
Crystal Radius R (mm)	2803	6287	26,550
Crystal to Sample distance q (mm)	570	641	1404
Sample to Detector Distance r (mm)	475	534	1170

Ray tracing result

	5 keV	10 keV	20 keV
Focal spot	20	40	50
Spatial resolution at detector	0.3eV/pixel	1.1eV/pixel	2.1eV/pixel

Optical components

• Polychromator

• Pre-mirror:

Polychromator

Crystal Bender

Generates elliptical curvature on a profiled crystal of 1/2 m length

Stepper motor driven shafts Stroke: 0-12 mm (required 3-4 mm) **Resolution: 0.5 μm**

Indigenously built

Mean Radius of Curvature: 2 m to 20 m (within +/-0.5%)

Actual bender inside a vacuum chamber with Ga/In based cooling arrangement

460 mm long profiled Si (111) Crystal ;Darwin width: 0.6 arc sec

Harmonic Rejection Mirror :

Substrate: Si Coating: Rh Radius: 1319 m Size : 1 m × 30 mm Surface Roughness: 3 Å r.m.s.

Cylindrical Mirror Side cooled, gravity compensated

Movement resolution of mount Shafts inside UHV : 1µm Indigenously built Mirror chamber with mirror mount

Mechanical layout of EXAFS BL at Indus-2

Commissioning stages

- Alignment of Front-end with SR
- Integrating the front end with beamline and achieving vacuum in subsystems
- Optical Alignment of with SR using BV systems and CCD detector
- Checking the SR foot prints at different locations of the beamline
- Checking the performance of the bender
- Recording absorption of standard samples to check the spatial resolution and band pass energy

Beam spot at sample position

22

Mo-Nb

24

Mo MoO₃

Reported Difference in E₀: ~9 eV

D. Lutzenkrichen-Hecht and R. Frahm, J. Synch. Rad., 6 (1999) 591.

Chemical shift

EXAFS Spectra of Bi_2O_3 taken at L_{III} edge

EXAFS MEASUREMNENTS

►U(VI) sorbed on alumina and kolinite
►Crystalline Pb₅Ge₃O₁₁

X-ray Absorption Spectroscopy of U(VI) sorbed onto Alumina

Sorption of U(VI) by alumina and kaolinite at varying pH has been studied by X-ray absorption Spectroscopy. The absorption intensity was found to increase with increasing pH of the suspension.

X-ray absorption spectrum of U(VI) sorbed onto Alumina

Conclusion:

Results from newly developed EXAFS beamline at Indus-2 are found to be in good agreemen with those reported in literature which implies the satisfactory performance of the beamline.

Further efforts are being made to improve the signal to noise ratio.

Acknowledgements

- Dr. S. Banerjee, Director BARC, Mumbai
- Dr. V.C. Sahni, Director, RRCAT
- Dr. S.M. Sharma, Coordinator, "Development of Indus-2 beamlines" Project
- Dr. N.C. das
- A.K. Sinha, V.K. Mishra
- Dr. A.K. Ghosh & Mr. Vishnu Verma
- Mr. Sanjay Chouksey
- V.K. Raghuvanshi, S.R. Kane and Dr. S.K. Deb
- Mr. Vijendra Prasad, Beam alignment section,
- Dr. A.K Tyagi, A. Singh, Dr. B.S. Tomar
- Indus-operation staff
- Mr. K.K. Thakkar, health physicist
- M/s. SMP Enterprises, Pune, India
- M/S. Integrated Automation Systems Pvt. Ltd. Mumbai